These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 28115032)
1. Hybrid methodology for tuberculosis incidence time-series forecasting based on ARIMA and a NAR neural network. Wang KW; Deng C; Li JP; Zhang YY; Li XY; Wu MC Epidemiol Infect; 2017 Apr; 145(6):1118-1129. PubMed ID: 28115032 [TBL] [Abstract][Full Text] [Related]
2. Comparison of autoregressive integrated moving average model and generalised regression neural network model for prediction of haemorrhagic fever with renal syndrome in China: a time-series study. Wang YW; Shen ZZ; Jiang Y BMJ Open; 2019 Jun; 9(6):e025773. PubMed ID: 31209084 [TBL] [Abstract][Full Text] [Related]
3. A New Hybrid Model Using an Autoregressive Integrated Moving Average and a Generalized Regression Neural Network for the Incidence of Tuberculosis in Heng County, China. Wei W; Jiang J; Gao L; Liang B; Huang J; Zang N; Ning C; Liao Y; Lai J; Yu J; Qin F; Chen H; Su J; Ye L; Liang H Am J Trop Med Hyg; 2017 Sep; 97(3):799-805. PubMed ID: 28820678 [TBL] [Abstract][Full Text] [Related]
4. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model. Wang Y; Xu C; Zhang S; Wang Z; Yang L; Zhu Y; Yuan J BMJ Open; 2019 Jul; 9(7):e024409. PubMed ID: 31371283 [TBL] [Abstract][Full Text] [Related]
5. Seasonality and Trend Forecasting of Tuberculosis Incidence in Chongqing, China. Liao Z; Zhang X; Zhang Y; Peng D Interdiscip Sci; 2019 Mar; 11(1):77-85. PubMed ID: 30734907 [TBL] [Abstract][Full Text] [Related]
6. The research of ARIMA, GM(1,1), and LSTM models for prediction of TB cases in China. Zhao D; Zhang H; Cao Q; Wang Z; He S; Zhou M; Zhang R PLoS One; 2022; 17(2):e0262734. PubMed ID: 35196309 [TBL] [Abstract][Full Text] [Related]
7. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population. Li Z; Wang Z; Song H; Liu Q; He B; Shi P; Ji Y; Xu D; Wang J Infect Drug Resist; 2019; 12():1011-1020. PubMed ID: 31118707 [No Abstract] [Full Text] [Related]
8. Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China. Wu W; Guo J; An S; Guan P; Ren Y; Xia L; Zhou B PLoS One; 2015; 10(8):e0135492. PubMed ID: 26270814 [TBL] [Abstract][Full Text] [Related]
9. A multivariate multi-step LSTM forecasting model for tuberculosis incidence with model explanation in Liaoning Province, China. Yang E; Zhang H; Guo X; Zang Z; Liu Z; Liu Y BMC Infect Dis; 2022 May; 22(1):490. PubMed ID: 35606725 [TBL] [Abstract][Full Text] [Related]
10. Time series modeling of pertussis incidence in China from 2004 to 2018 with a novel wavelet based SARIMA-NAR hybrid model. Wang Y; Xu C; Wang Z; Zhang S; Zhu Y; Yuan J PLoS One; 2018; 13(12):e0208404. PubMed ID: 30586416 [TBL] [Abstract][Full Text] [Related]
11. [Prediction of schistosomiasis infection rates of population based on ARIMA-NARNN model]. Ke-Wei W; Yu W; Jin-Ping L; Yu-Yu J Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2016 Jul; 28(6):630-634. PubMed ID: 29469251 [TBL] [Abstract][Full Text] [Related]
12. A hybrid seasonal prediction model for tuberculosis incidence in China. Cao S; Wang F; Tam W; Tse LA; Kim JH; Liu J; Lu Z BMC Med Inform Decis Mak; 2013 May; 13():56. PubMed ID: 23638635 [TBL] [Abstract][Full Text] [Related]
13. Seasonality and Trend Forecasting of Tuberculosis Prevalence Data in Eastern Cape, South Africa, Using a Hybrid Model. Azeez A; Obaromi D; Odeyemi A; Ndege J; Muntabayi R Int J Environ Res Public Health; 2016 Jul; 13(8):. PubMed ID: 27472353 [TBL] [Abstract][Full Text] [Related]
14. Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China. Zhang R; Song H; Chen Q; Wang Y; Wang S; Li Y PLoS One; 2022; 17(1):e0262009. PubMed ID: 35030203 [TBL] [Abstract][Full Text] [Related]
15. Application of a Combined Model with Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting Hepatitis Incidence in Heng County, China. Wei W; Jiang J; Liang H; Gao L; Liang B; Huang J; Zang N; Liao Y; Yu J; Lai J; Qin F; Su J; Ye L; Chen H PLoS One; 2016; 11(6):e0156768. PubMed ID: 27258555 [TBL] [Abstract][Full Text] [Related]
16. Applying SARIMA, ETS, and hybrid models for prediction of tuberculosis incidence rate in Taiwan. Kuan MM PeerJ; 2022; 10():e13117. PubMed ID: 36164599 [TBL] [Abstract][Full Text] [Related]
17. Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models. Adeyinka DA; Muhajarine N BMC Med Res Methodol; 2020 Dec; 20(1):292. PubMed ID: 33267817 [TBL] [Abstract][Full Text] [Related]
18. Forecasting blood demand for different blood groups in Shiraz using auto regressive integrated moving average (ARIMA) and artificial neural network (ANN) and a hybrid approaches. Sarvestani SE; Hatam N; Seif M; Kasraian L; Lari FS; Bayati M Sci Rep; 2022 Dec; 12(1):22031. PubMed ID: 36539511 [TBL] [Abstract][Full Text] [Related]
19. [Application of nonlinear autoregressive neural network in predicting incidence tendency of hemorrhagic fever with renal syndrome]. Wu W; An S; Guo J; Guan P; Ren Y; Xia L; Zhou B Zhonghua Liu Xing Bing Xue Za Zhi; 2015 Dec; 36(12):1394-6. PubMed ID: 26850398 [TBL] [Abstract][Full Text] [Related]
20. A hybrid model for predicting the prevalence of schistosomiasis in humans of Qianjiang City, China. Zhou L; Yu L; Wang Y; Lu Z; Tian L; Tan L; Shi Y; Nie S; Liu L PLoS One; 2014; 9(8):e104875. PubMed ID: 25119882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]