BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28115187)

  • 1. Semi-automatic 3D morphological reconstruction of neurons with densely branching morphology: Application to retinal AII amacrine cells imaged with multi-photon excitation microscopy.
    Zandt BJ; Losnegård A; Hodneland E; Veruki ML; Lundervold A; Hartveit E
    J Neurosci Methods; 2017 Mar; 279():101-118. PubMed ID: 28115187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AII amacrine cells: quantitative reconstruction and morphometric analysis of electrophysiologically identified cells in live rat retinal slices imaged with multi-photon excitation microscopy.
    Zandt BJ; Liu JH; Veruki ML; Hartveit E
    Brain Struct Funct; 2017 Jan; 222(1):151-182. PubMed ID: 26951289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rivulet: 3D Neuron Morphology Tracing with Iterative Back-Tracking.
    Liu S; Zhang D; Liu S; Feng D; Peng H; Cai W
    Neuroinformatics; 2016 Oct; 14(4):387-401. PubMed ID: 27184384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrotonic signal processing in AII amacrine cells: compartmental models and passive membrane properties for a gap junction-coupled retinal neuron.
    Zandt BJ; Veruki ML; Hartveit E
    Brain Struct Funct; 2018 Sep; 223(7):3383-3410. PubMed ID: 29948192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical coupling and passive membrane properties of AII amacrine cells.
    Veruki ML; Oltedal L; Hartveit E
    J Neurophysiol; 2010 Mar; 103(3):1456-66. PubMed ID: 20089813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. M-AMST: an automatic 3D neuron tracing method based on mean shift and adapted minimum spanning tree.
    Wan Z; He Y; Hao M; Yang J; Zhong N
    BMC Bioinformatics; 2017 Mar; 18(1):197. PubMed ID: 28356056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the 3D-reconstruction technique for serial block-face scanning electron microscopy.
    Wernitznig S; Sele M; Urschler M; Zankel A; Pölt P; Rind FC; Leitinger G
    J Neurosci Methods; 2016 May; 264():16-24. PubMed ID: 26928258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Threshold-based segmentation of fluorescent and chromogenic images of microglia, astrocytes and oligodendrocytes in FIJI.
    Healy S; McMahon J; Owens P; Dockery P; FitzGerald U
    J Neurosci Methods; 2018 Feb; 295():87-103. PubMed ID: 29221640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-scale segmentation of neurons based on one-class classification.
    Hernandez-Herrera P; Papadakis M; Kakadiaris IA
    J Neurosci Methods; 2016 Jun; 266():94-106. PubMed ID: 27038663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved detection of soma location and morphology in fluorescence microscopy images of neurons.
    Kayasandik CB; Labate D
    J Neurosci Methods; 2016 Dec; 274():61-70. PubMed ID: 27688018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Form and function of ON-OFF amacrine cells in the amphibian retina.
    Miller RF; Staff NP; Velte TJ
    J Neurophysiol; 2006 May; 95(5):3171-90. PubMed ID: 16481463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic path searching for automatic neuron reconstruction.
    Xie J; Zhao T; Lee T; Myers E; Peng H
    Med Image Anal; 2011 Oct; 15(5):680-9. PubMed ID: 21669547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated Neuron Reconstruction from 3D Fluorescence Microscopy Images Using Sequential Monte Carlo Estimation.
    Radojević M; Meijering E
    Neuroinformatics; 2019 Jul; 17(3):423-442. PubMed ID: 30542954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale automatic reconstruction of neuronal processes from electron microscopy images.
    Kaynig V; Vazquez-Reina A; Knowles-Barley S; Roberts M; Jones TR; Kasthuri N; Miller E; Lichtman J; Pfister H
    Med Image Anal; 2015 May; 22(1):77-88. PubMed ID: 25791436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FMST: an Automatic Neuron Tracing Method Based on Fast Marching and Minimum Spanning Tree.
    Yang J; Hao M; Liu X; Wan Z; Zhong N; Peng H
    Neuroinformatics; 2019 Apr; 17(2):185-196. PubMed ID: 30039210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition.
    Mathew B; Schmitz A; Muñoz-Descalzo S; Ansari N; Pampaloni F; Stelzer EH; Fischer SC
    BMC Bioinformatics; 2015 Jun; 16():187. PubMed ID: 26049713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Morphological Reconstruction of Neurons from Multiphoton and Confocal Microscopy Images Using 3D Tubular Models.
    Santamaría-Pang A; Hernandez-Herrera P; Papadakis M; Saggau P; Kakadiaris IA
    Neuroinformatics; 2015 Jul; 13(3):297-320. PubMed ID: 25631538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of semi-automatic and automatic data acquisition methods for studying three-dimensional distributions of large neuronal populations and axonal plexuses.
    Lillehaug S; Oyan D; Leergaard TB; Bjaalie JG
    Network; 2002 Aug; 13(3):343-56. PubMed ID: 12222818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient semi-automatic 3D segmentation for neuron tracing in electron microscopy images.
    Jones C; Liu T; Cohan NW; Ellisman M; Tasdizen T
    J Neurosci Methods; 2015 May; 246():13-21. PubMed ID: 25769273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning-guided automatic three dimensional synapse quantification for drosophila neurons.
    Sanders J; Singh A; Sterne G; Ye B; Zhou J
    BMC Bioinformatics; 2015 May; 16():177. PubMed ID: 26017624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.