BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28115301)

  • 1. Functions of microRNA in seed development, dormancy and germination processes.
    Wei J; Lu XJ; Zhang XL; Mei M; Huang XL
    Yi Chuan; 2017 Jan; 39(1):14-21. PubMed ID: 28115301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination.
    Shu K; Liu XD; Xie Q; He ZH
    Mol Plant; 2016 Jan; 9(1):34-45. PubMed ID: 26343970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of microRNAs that regulate seed dormancy and germination.
    Kumar MB; Martin RC; Nonogaki H
    Methods Mol Biol; 2011; 773():199-213. PubMed ID: 21898258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dormancy and germination: How does the crop seed decide?
    Shu K; Meng YJ; Shuai HW; Liu WG; Du JB; Liu J; Yang WY
    Plant Biol (Stuttg); 2015 Nov; 17(6):1104-12. PubMed ID: 26095078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics and posttranslational proteomics of seed dormancy and germination.
    Rajjou L; Belghazi M; Catusse J; Ogé L; Arc E; Godin B; Chibani K; Ali-Rachidi S; Collet B; Grappin P; Jullien M; Gallardo K; Job C; Job D
    Methods Mol Biol; 2011; 773():215-36. PubMed ID: 21898259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms of seed dormancy.
    Graeber K; Nakabayashi K; Miatton E; Leubner-Metzger G; Soppe WJ
    Plant Cell Environ; 2012 Oct; 35(10):1769-86. PubMed ID: 22620982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L.
    Li Z; Zhang J; Liu Y; Zhao J; Fu J; Ren X; Wang G; Wang J
    BMC Plant Biol; 2016 Feb; 16():41. PubMed ID: 26860357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome assembly in Suaeda aralocaspica to reveal the distinct temporal gene/miRNA alterations between the dimorphic seeds during germination.
    Wang L; Wang HL; Yin L; Tian CY
    BMC Genomics; 2017 Oct; 18(1):806. PubMed ID: 29052505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory crosstalk between microRNAs and hormone signalling cascades controls the variation on seed dormancy phenotype at Arabidopsis thaliana seed set.
    Liu Y; El-Kassaby YA
    Plant Cell Rep; 2017 May; 36(5):705-717. PubMed ID: 28197719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. microRNA, seeds, and Darwin?: diverse function of miRNA in seed biology and plant responses to stress.
    Martin RC; Liu PP; Goloviznina NA; Nonogaki H
    J Exp Bot; 2010 May; 61(9):2229-34. PubMed ID: 20335408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome-Level Analysis of Metabolism- and Stress-Related Proteins during Seed Dormancy and Germination in Gnetum parvifolium.
    Chang E; Deng N; Zhang J; Liu J; Chen L; Zhao X; Abbas M; Jiang Z; Shi S
    J Agric Food Chem; 2018 Mar; 66(11):3019-3029. PubMed ID: 29490456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Germostatin resistance locus 1 encodes a PHD finger protein involved in auxin-mediated seed dormancy and germination.
    Ye Y; Gong Z; Lu X; Miao D; Shi J; Lu J; Zhao Y
    Plant J; 2016 Jan; 85(1):3-15. PubMed ID: 26611158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development.
    Dekkers BJ; He H; Hanson J; Willems LA; Jamar DC; Cueff G; Rajjou L; Hilhorst HW; Bentsink L
    Plant J; 2016 Feb; 85(4):451-65. PubMed ID: 26729600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two Groups of Thellungiella salsuginea RAVs Exhibit Distinct Responses and Sensitivity to Salt and ABA in Transgenic Arabidopsis.
    Yang S; Luo C; Song Y; Wang J
    PLoS One; 2016; 11(4):e0153517. PubMed ID: 27093611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyses of reactive oxygen species and antioxidants in relation to seed longevity and germination.
    Bailly C; Kranner I
    Methods Mol Biol; 2011; 773():343-67. PubMed ID: 21898265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordination of seed dormancy and germination processes by MYB96.
    Lee K; Seo PJ
    Plant Signal Behav; 2015; 10(9):e1056423. PubMed ID: 26313409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-genomics dissection of seed dormancy and germination.
    Holdsworth MJ; Finch-Savage WE; Grappin P; Job D
    Trends Plant Sci; 2008 Jan; 13(1):7-13. PubMed ID: 18160329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions.
    Kanno Y; Jikumaru Y; Hanada A; Nambara E; Abrams SR; Kamiya Y; Seo M
    Plant Cell Physiol; 2010 Dec; 51(12):1988-2001. PubMed ID: 20959378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy.
    Nakashima K; Fujita Y; Kanamori N; Katagiri T; Umezawa T; Kidokoro S; Maruyama K; Yoshida T; Ishiyama K; Kobayashi M; Shinozaki K; Yamaguchi-Shinozaki K
    Plant Cell Physiol; 2009 Jul; 50(7):1345-63. PubMed ID: 19541597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LEC1, FUS3, ABI3 and Em expression reveals no correlation with dormancy in Arabidopsis.
    Baumbusch LO; Hughes DW; Galau GA; Jakobsen KS
    J Exp Bot; 2004 Jan; 55(394):77-87. PubMed ID: 14676287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.