BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28115379)

  • 1. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation.
    Reverón I; Jiménez N; Curiel JA; Peñas E; López de Felipe F; de Las Rivas B; Muñoz R
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28115379
    [No Abstract]   [Full Text] [Related]  

  • 2. Uncovering the Lactobacillus plantarum WCFS1 gallate decarboxylase involved in tannin degradation.
    Jiménez N; Curiel JA; Reverón I; de Las Rivas B; Muñoz R
    Appl Environ Microbiol; 2013 Jul; 79(14):4253-63. PubMed ID: 23645198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and biochemical approaches towards unravelling the degradation of gallotannins by Streptococcus gallolyticus.
    Jiménez N; Reverón I; Esteban-Torres M; López de Felipe F; de Las Rivas B; Muñoz R
    Microb Cell Fact; 2014 Oct; 13():154. PubMed ID: 25359406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains.
    Jiménez N; Esteban-Torres M; Mancheño JM; de Las Rivas B; Muñoz R
    Appl Environ Microbiol; 2014 May; 80(10):2991-7. PubMed ID: 24610854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular adaptation of Lactobacillus plantarum WCFS1 to gallic acid revealed by genome-scale transcriptomic signature and physiological analysis.
    Reverón I; de las Rivas B; Matesanz R; Muñoz R; López de Felipe F
    Microb Cell Fact; 2015 Oct; 14():160. PubMed ID: 26453568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of genes involved in metabolism of phenolic compounds by Lactobacillus pentosus and its relevance for table-olive fermentations.
    Carrasco JA; Lucena-Padrós H; Brenes M; Ruiz-Barba JL
    Food Microbiol; 2018 Dec; 76():382-389. PubMed ID: 30166164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T.
    Rodríguez H; de las Rivas B; Gómez-Cordovés C; Muñoz R
    Int J Food Microbiol; 2008 Jan; 121(1):92-8. PubMed ID: 18054106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of three tannases cloned from closely related lactobacillus species: L. Plantarum, L. Paraplantarum, and L. Pentosus.
    Ueda S; Nomoto R; Yoshida K; Osawa R
    BMC Microbiol; 2014 Apr; 14():87. PubMed ID: 24708557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Lactobacillus plantarum esterase active on a broad range of phenolic esters.
    Esteban-Torres M; Landete JM; Reverón I; Santamaría L; de las Rivas B; Muñoz R
    Appl Environ Microbiol; 2015 May; 81(9):3235-42. PubMed ID: 25746986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic and mutational analyses of tannase from Lactobacillus plantarum.
    Matoba Y; Tanaka N; Noda M; Higashikawa F; Kumagai T; Sugiyama M
    Proteins; 2013 Nov; 81(11):2052-8. PubMed ID: 23836494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production and physicochemical properties of recombinant Lactobacillus plantarum tannase.
    Curiel JA; Rodríguez H; Acebrón I; Mancheño JM; De Las Rivas B; Muñoz R
    J Agric Food Chem; 2009 Jul; 57(14):6224-30. PubMed ID: 19601665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of
    Landete JM; Plaza-Vinuesa L; Montenegro C; Santamaría L; Reverón I; de Las Rivas B; Muñoz R
    Int J Food Sci Nutr; 2021 Dec; 72(8):1035-1045. PubMed ID: 33730985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unravelling the Reduction Pathway as an Alternative Metabolic Route to Hydroxycinnamate Decarboxylation in Lactobacillus plantarum.
    Santamaría L; Reverón I; López de Felipe F; de Las Rivas B; Muñoz R
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29776925
    [No Abstract]   [Full Text] [Related]  

  • 14. Characterization of a feruloyl esterase from Lactobacillus plantarum.
    Esteban-Torres M; Reverón I; Mancheño JM; de Las Rivas B; Muñoz R
    Appl Environ Microbiol; 2013 Sep; 79(17):5130-6. PubMed ID: 23793626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tannase activity by lactic acid bacteria isolated from grape must and wine.
    Vaquero I; Marcobal A; Muñoz R
    Int J Food Microbiol; 2004 Nov; 96(2):199-204. PubMed ID: 15364474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive analysis of the metabolic and genomic features of tannin transforming Lactiplantibacillus plantarum strains.
    Pulido-Mateos EC; Lessard-Lord J; Guyonnet D; Desjardins Y; Roy D
    Sci Rep; 2022 Dec; 12(1):22406. PubMed ID: 36575241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gallic acid production under anaerobic submerged fermentation by two bacilli strains.
    Aguilar-Zárate P; Cruz MA; Montañez J; Rodríguez-Herrera R; Wong-Paz JE; Belmares RE; Aguilar CN
    Microb Cell Fact; 2015 Dec; 14():209. PubMed ID: 26715179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolysis of tannic acid catalyzed by immobilized-stabilized derivatives of Tannase from Lactobacillus plantarum.
    Curiel JA; Betancor L; de las Rivas B; Muñoz R; Guisan JM; Fernández-Lorente G
    J Agric Food Chem; 2010 May; 58(10):6403-9. PubMed ID: 20438129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of lactic acid bacteria from Miang, a traditional fermented tea leaf in northern Thailand and their tannin-tolerant ability in tea extract.
    Chaikaew S; Baipong S; Sone T; Kanpiengjai A; Chui-Chai N; Asano K; Khanongnuch C
    J Microbiol; 2017 Sep; 55(9):720-729. PubMed ID: 28865074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent trends and advancements in microbial tannase-catalyzed biotransformation of tannins: a review.
    Dhiman S; Mukherjee G; Singh AK
    Int Microbiol; 2018 Dec; 21(4):175-195. PubMed ID: 30810902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.