These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

979 related articles for article (PubMed ID: 28115481)

  • 21. Single-cell and population coding of expected reward probability in the orbitofrontal cortex of the rat.
    van Duuren E; van der Plasse G; Lankelma J; Joosten RN; Feenstra MG; Pennartz CM
    J Neurosci; 2009 Jul; 29(28):8965-76. PubMed ID: 19605634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Representation of spatial goals in rat orbitofrontal cortex.
    Feierstein CE; Quirk MC; Uchida N; Sosulski DL; Mainen ZF
    Neuron; 2006 Aug; 51(4):495-507. PubMed ID: 16908414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Primate Orbitofrontal Cortex Codes Information Relevant for Managing Explore-Exploit Tradeoffs.
    Costa VD; Averbeck BB
    J Neurosci; 2020 Mar; 40(12):2553-2561. PubMed ID: 32060169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential effects of inactivation of the orbitofrontal cortex on strategy set-shifting and reversal learning.
    Ghods-Sharifi S; Haluk DM; Floresco SB
    Neurobiol Learn Mem; 2008 May; 89(4):567-73. PubMed ID: 18054257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Basolateral amygdala lesions facilitate reward choices after negative feedback in rats.
    Izquierdo A; Darling C; Manos N; Pozos H; Kim C; Ostrander S; Cazares V; Stepp H; Rudebeck PH
    J Neurosci; 2013 Feb; 33(9):4105-9. PubMed ID: 23447618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Guidance of instrumental behavior under reversal conditions requires dopamine D1 and D2 receptor activation in the orbitofrontal cortex.
    Calaminus C; Hauber W
    Neuroscience; 2008 Jul; 154(4):1195-204. PubMed ID: 18538938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relative reward preference in primate orbitofrontal cortex.
    Tremblay L; Schultz W
    Nature; 1999 Apr; 398(6729):704-8. PubMed ID: 10227292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Information coding in the rodent prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared with that in pyriform cortex.
    Schoenbaum G; Eichenbaum H
    J Neurophysiol; 1995 Aug; 74(2):733-50. PubMed ID: 7472378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinct Roles for the Amygdala and Orbitofrontal Cortex in Representing the Relative Amount of Expected Reward.
    Saez RA; Saez A; Paton JJ; Lau B; Salzman CD
    Neuron; 2017 Jul; 95(1):70-77.e3. PubMed ID: 28683271
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective delay activity in the medial prefrontal cortex of the rat: contribution of sensorimotor information and contingency.
    Cowen SL; McNaughton BL
    J Neurophysiol; 2007 Jul; 98(1):303-16. PubMed ID: 17507507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Action-outcome relationships are represented differently by medial prefrontal and orbitofrontal cortex neurons during action execution.
    Simon NW; Wood J; Moghaddam B
    J Neurophysiol; 2015 Dec; 114(6):3374-85. PubMed ID: 26467523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMDA receptors control cue-outcome selectivity and plasticity of orbitofrontal firing patterns during associative stimulus-reward learning.
    van Wingerden M; Vinck M; Tijms V; Ferreira IR; Jonker AJ; Pennartz CM
    Neuron; 2012 Nov; 76(4):813-25. PubMed ID: 23177965
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex.
    Chudasama Y; Robbins TW
    J Neurosci; 2003 Sep; 23(25):8771-80. PubMed ID: 14507977
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuronal representation of individual heroin choices in the orbitofrontal cortex.
    Guillem K; Brenot V; Durand A; Ahmed SH
    Addict Biol; 2018 May; 23(3):880-888. PubMed ID: 28703355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Orbitofrontal neurons acquire responses to 'valueless' Pavlovian cues during unblocking.
    McDannald MA; Esber GR; Wegener MA; Wied HM; Liu TL; Stalnaker TA; Jones JL; Trageser J; Schoenbaum G
    Elife; 2014 Jul; 3():e02653. PubMed ID: 25037263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rat prefrontal cortical neurons selectively code strategy switches.
    Rich EL; Shapiro M
    J Neurosci; 2009 Jun; 29(22):7208-19. PubMed ID: 19494143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task.
    Wallis JD; Miller EK
    Eur J Neurosci; 2003 Oct; 18(7):2069-81. PubMed ID: 14622240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural activity of orbitofrontal cortex contributes to control of waiting.
    Xiao X; Deng H; Wei L; Huang Y; Wang Z
    Eur J Neurosci; 2016 Sep; 44(6):2300-13. PubMed ID: 27336203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The orbitofrontal cortex as part of a hierarchical neural system mediating choice between two good options.
    Keiflin R; Reese RM; Woods CA; Janak PH
    J Neurosci; 2013 Oct; 33(40):15989-98. PubMed ID: 24089503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 49.