These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

984 related articles for article (PubMed ID: 28115481)

  • 41. Neural activity of orbitofrontal cortex contributes to control of waiting.
    Xiao X; Deng H; Wei L; Huang Y; Wang Z
    Eur J Neurosci; 2016 Sep; 44(6):2300-13. PubMed ID: 27336203
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Serotonergic Innervations of the Orbitofrontal and Medial-prefrontal Cortices are Differentially Involved in Visual Discrimination and Reversal Learning in Rats.
    Alsiö J; Lehmann O; McKenzie C; Theobald DE; Searle L; Xia J; Dalley JW; Robbins TW
    Cereb Cortex; 2021 Jan; 31(2):1090-1105. PubMed ID: 33043981
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Information coding in the rodent prefrontal cortex. II. Ensemble activity in orbitofrontal cortex.
    Schoenbaum G; Eichenbaum H
    J Neurophysiol; 1995 Aug; 74(2):751-62. PubMed ID: 7472379
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Auditory cortex reflects goal-directed movement but is not necessary for behavioral adaptation in sound-cued reward tracking.
    Stoilova VV; Knauer B; Berg S; Rieber E; Jäkel F; Stüttgen MC
    J Neurophysiol; 2020 Oct; 124(4):1056-1071. PubMed ID: 32845769
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of amygdala lesions on reward-value coding in orbital and medial prefrontal cortex.
    Rudebeck PH; Mitz AR; Chacko RV; Murray EA
    Neuron; 2013 Dec; 80(6):1519-31. PubMed ID: 24360550
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Amygdala and orbitofrontal cortex lesions differentially influence choices during object reversal learning.
    Rudebeck PH; Murray EA
    J Neurosci; 2008 Aug; 28(33):8338-43. PubMed ID: 18701696
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neural Estimates of Imagined Outcomes in Basolateral Amygdala Depend on Orbitofrontal Cortex.
    Lucantonio F; Gardner MP; Mirenzi A; Newman LE; Takahashi YK; Schoenbaum G
    J Neurosci; 2015 Dec; 35(50):16521-30. PubMed ID: 26674876
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of inference on dopaminergic prediction errors depend on orbitofrontal processing.
    Takahashi YK; Stalnaker TA; Roesch MR; Schoenbaum G
    Behav Neurosci; 2017 Apr; 131(2):127-134. PubMed ID: 28301188
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Increased firing to cues that predict low-value reward in the medial orbitofrontal cortex.
    Burton AC; Kashtelyan V; Bryden DW; Roesch MR
    Cereb Cortex; 2014 Dec; 24(12):3310-21. PubMed ID: 23901075
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Orbitofrontal Circuits Control Multiple Reinforcement-Learning Processes.
    Groman SM; Keistler C; Keip AJ; Hammarlund E; DiLeone RJ; Pittenger C; Lee D; Taylor JR
    Neuron; 2019 Aug; 103(4):734-746.e3. PubMed ID: 31253468
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ensembles in medial and lateral orbitofrontal cortex construct cognitive maps emphasizing different features of the behavioral landscape.
    Lopatina N; Sadacca BF; McDannald MA; Styer CV; Peterson JF; Cheer JF; Schoenbaum G
    Behav Neurosci; 2017 Jun; 131(3):201-212. PubMed ID: 28541078
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Orbitofrontal inactivation impairs reversal of Pavlovian learning by interfering with 'disinhibition' of responding for previously unrewarded cues.
    Burke KA; Takahashi YK; Correll J; Brown PL; Schoenbaum G
    Eur J Neurosci; 2009 Nov; 30(10):1941-6. PubMed ID: 19912335
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices.
    O'Doherty J; Critchley H; Deichmann R; Dolan RJ
    J Neurosci; 2003 Aug; 23(21):7931-9. PubMed ID: 12944524
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex.
    Clarke HF; Robbins TW; Roberts AC
    J Neurosci; 2008 Oct; 28(43):10972-82. PubMed ID: 18945905
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Learning-related changes in response patterns of prefrontal neurons during instrumental conditioning.
    Mulder AB; Nordquist RE; Orgüt O; Pennartz CM
    Behav Brain Res; 2003 Nov; 146(1-2):77-88. PubMed ID: 14643461
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The functions of the orbitofrontal cortex.
    Rolls ET
    Brain Cogn; 2004 Jun; 55(1):11-29. PubMed ID: 15134840
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatial Representations in Rat Orbitofrontal Cortex.
    Wikenheiser AM; Gardner MPH; Mueller LE; Schoenbaum G
    J Neurosci; 2021 Aug; 41(32):6933-6945. PubMed ID: 34210776
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Changes in Appetitive Associative Strength Modulates Nucleus Accumbens, But Not Orbitofrontal Cortex Neuronal Ensemble Excitability.
    Ziminski JJ; Hessler S; Margetts-Smith G; Sieburg MC; Crombag HS; Koya E
    J Neurosci; 2017 Mar; 37(12):3160-3170. PubMed ID: 28213443
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neurons in the macaque orbitofrontal cortex code relative preference of both rewarding and aversive outcomes.
    Hosokawa T; Kato K; Inoue M; Mikami A
    Neurosci Res; 2007 Mar; 57(3):434-45. PubMed ID: 17239463
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep brain stimulation in the lateral orbitofrontal cortex impairs spatial reversal learning.
    Klanker M; Post G; Joosten R; Feenstra M; Denys D
    Behav Brain Res; 2013 May; 245():7-12. PubMed ID: 23396148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 50.