These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
687 related articles for article (PubMed ID: 28115553)
1. Antidepressant Potential of ( Fukumoto K; Toki H; Iijima M; Hashihayata T; Yamaguchi JI; Hashimoto K; Chaki S J Pharmacol Exp Ther; 2017 Apr; 361(1):9-16. PubMed ID: 28115553 [TBL] [Abstract][Full Text] [Related]
2. Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Koike H; Iijima M; Chaki S Behav Brain Res; 2011 Oct; 224(1):107-11. PubMed ID: 21669235 [TBL] [Abstract][Full Text] [Related]
3. Comparison of ketamine, 7,8-dihydroxyflavone, and ANA-12 antidepressant effects in the social defeat stress model of depression. Zhang JC; Yao W; Dong C; Yang C; Ren Q; Ma M; Han M; Hashimoto K Psychopharmacology (Berl); 2015 Dec; 232(23):4325-35. PubMed ID: 26337614 [TBL] [Abstract][Full Text] [Related]
4. Involvement of AMPA receptors in the antidepressant-like effects of dextromethorphan in mice. Nguyen L; Matsumoto RR Behav Brain Res; 2015 Dec; 295():26-34. PubMed ID: 25804358 [TBL] [Abstract][Full Text] [Related]
5. The novel methoxetamine analogs N-ethylnorketamine hydrochloride (NENK), 2-MeO-N-ethylketamine hydrochloride (2-MeO-NEK), and 4-MeO-N-ethylketamine hydrochloride (4-MeO-NEK) elicit rapid antidepressant effects via activation of AMPA and 5-HT Sayson LV; Botanas CJ; Custodio RJP; Abiero A; Kim M; Lee HJ; Kim HJ; Yoo SY; Lee KW; Ryu HW; Acharya S; Kim KM; Lee YS; Cheong JH Psychopharmacology (Berl); 2019 Jul; 236(7):2201-2210. PubMed ID: 30891619 [TBL] [Abstract][Full Text] [Related]
6. Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats. Koike H; Chaki S Behav Brain Res; 2014 Sep; 271():111-5. PubMed ID: 24909673 [TBL] [Abstract][Full Text] [Related]
7. Comparison of antidepressant and side effects in mice after intranasal administration of (R,S)-ketamine, (R)-ketamine, and (S)-ketamine. Chang L; Zhang K; Pu Y; Qu Y; Wang SM; Xiong Z; Ren Q; Dong C; Fujita Y; Hashimoto K Pharmacol Biochem Behav; 2019 Jun; 181():53-59. PubMed ID: 31034852 [TBL] [Abstract][Full Text] [Related]
8. Comparison of R-ketamine and rapastinel antidepressant effects in the social defeat stress model of depression. Yang B; Zhang JC; Han M; Yao W; Yang C; Ren Q; Ma M; Chen QX; Hashimoto K Psychopharmacology (Berl); 2016 Oct; 233(19-20):3647-57. PubMed ID: 27488193 [TBL] [Abstract][Full Text] [Related]
9. Propofol pretreatment increases antidepressant-like effects induced by acute administration of ketamine in rats receiving forced swimming test. Wang X; Yang Y; Zhou X; Wu J; Li J; Jiang X; Qu Q; Ou C; Liu L; Zhou S Psychiatry Res; 2011 Jan; 185(1-2):248-53. PubMed ID: 20580983 [TBL] [Abstract][Full Text] [Related]
10. The antidepressant-like effects of glutamatergic drugs ketamine and AMPA receptor potentiator LY 451646 are preserved in bdnf⁺/⁻ heterozygous null mice. Lindholm JS; Autio H; Vesa L; Antila H; Lindemann L; Hoener MC; Skolnick P; Rantamäki T; Castrén E Neuropharmacology; 2012 Jan; 62(1):391-7. PubMed ID: 21867718 [TBL] [Abstract][Full Text] [Related]
11. Calcium/Calmodulin-Dependent Protein Kinase II and Eukaryotic Elongation Factor 2 Kinase Pathways Mediate the Antidepressant Action of Ketamine. Adaikkan C; Taha E; Barrera I; David O; Rosenblum K Biol Psychiatry; 2018 Jul; 84(1):65-75. PubMed ID: 29395043 [TBL] [Abstract][Full Text] [Related]
12. Role of NMDA receptor GluN2D subunit in the antidepressant effects of enantiomers of ketamine. Ide S; Ikekubo Y; Mishina M; Hashimoto K; Ikeda K J Pharmacol Sci; 2017 Nov; 135(3):138-140. PubMed ID: 29174627 [TBL] [Abstract][Full Text] [Related]
13. R (-)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine. Zhang JC; Li SX; Hashimoto K Pharmacol Biochem Behav; 2014 Jan; 116():137-41. PubMed ID: 24316345 [TBL] [Abstract][Full Text] [Related]
14. A historical review of antidepressant effects of ketamine and its enantiomers. Wei Y; Chang L; Hashimoto K Pharmacol Biochem Behav; 2020 Mar; 190():172870. PubMed ID: 32035078 [TBL] [Abstract][Full Text] [Related]
15. Lack of rapid antidepressant effects of Kir4.1 channel inhibitors in a chronic social defeat stress model: Comparison with (R)-ketamine. Xiong Z; Zhang K; Ishima T; Ren Q; Ma M; Pu Y; Chang L; Chen J; Hashimoto K Pharmacol Biochem Behav; 2019 Jan; 176():57-62. PubMed ID: 30502360 [TBL] [Abstract][Full Text] [Related]
16. Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naïve and "depressed" mice exposed to chronic mild stress. Franceschelli A; Sens J; Herchick S; Thelen C; Pitychoutis PM Neuroscience; 2015 Apr; 290():49-60. PubMed ID: 25595985 [TBL] [Abstract][Full Text] [Related]
17. Lack of persistent effects of ketamine in rodent models of depression. Popik P; Kos T; Sowa-Kućma M; Nowak G Psychopharmacology (Berl); 2008 Jun; 198(3):421-30. PubMed ID: 18458881 [TBL] [Abstract][Full Text] [Related]
18. Lack of deuterium isotope effects in the antidepressant effects of (R)-ketamine in a chronic social defeat stress model. Zhang K; Toki H; Fujita Y; Ma M; Chang L; Qu Y; Harada S; Nemoto T; Mizuno-Yasuhira A; Yamaguchi JI; Chaki S; Hashimoto K Psychopharmacology (Berl); 2018 Nov; 235(11):3177-3185. PubMed ID: 30215218 [TBL] [Abstract][Full Text] [Related]
19. Molecular mechanisms of the rapid-acting and long-lasting antidepressant actions of (R)-ketamine. Hashimoto K Biochem Pharmacol; 2020 Jul; 177():113935. PubMed ID: 32224141 [TBL] [Abstract][Full Text] [Related]
20. N,N-dimethylglycine differentially modulates psychotomimetic and antidepressant-like effects of ketamine in mice. Lin JC; Chan MH; Lee MY; Chen YC; Chen HH Prog Neuropsychopharmacol Biol Psychiatry; 2016 Nov; 71():7-13. PubMed ID: 27296677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]