These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28115631)

  • 1. Ligand binding to 2΄-deoxyguanosine sensing riboswitch in metabolic context.
    Kim YB; Wacker A; Laer KV; Rogov VV; Suess B; Schwalbe H
    Nucleic Acids Res; 2017 May; 45(9):5375-5386. PubMed ID: 28115631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and dynamics of the deoxyguanosine-sensing riboswitch studied by NMR-spectroscopy.
    Wacker A; Buck J; Mathieu D; Richter C; Wöhnert J; Schwalbe H
    Nucleic Acids Res; 2011 Aug; 39(15):6802-12. PubMed ID: 21576236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
    Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J
    RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guanine riboswitch variants from Mesoplasma florum selectively recognize 2'-deoxyguanosine.
    Kim JN; Roth A; Breaker RR
    Proc Natl Acad Sci U S A; 2007 Oct; 104(41):16092-7. PubMed ID: 17911257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-Cell NMR Spectroscopy of Functional Riboswitch Aptamers in Eukaryotic Cells.
    Broft P; Dzatko S; Krafcikova M; Wacker A; Hänsel-Hertsch R; Dötsch V; Trantirek L; Schwalbe H
    Angew Chem Int Ed Engl; 2021 Jan; 60(2):865-872. PubMed ID: 32975353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning riboswitch-mediated gene regulation by rational control of aptamer ligand binding properties.
    Rode AB; Endoh T; Sugimoto N
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):905-9. PubMed ID: 25470002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain.
    Nozinovic S; Reining A; Kim YB; Noeske J; Schlepckow K; Wöhnert J; Schwalbe H
    RNA Biol; 2014; 11(5):655-6. PubMed ID: 24921630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for 2'-deoxyguanosine recognition by the 2'-dG-II class of riboswitches.
    Matyjasik MM; Batey RT
    Nucleic Acids Res; 2019 Nov; 47(20):10931-10941. PubMed ID: 31598729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches.
    Baird NJ; Ferré-D'Amaré AR
    RNA; 2013 Feb; 19(2):167-76. PubMed ID: 23249744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into ligand binding to PreQ1 Riboswitch Aptamer from molecular dynamics simulations.
    Gong Z; Zhao Y; Chen C; Duan Y; Xiao Y
    PLoS One; 2014; 9(3):e92247. PubMed ID: 24663240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy.
    Warhaut S; Mertinkus KR; Höllthaler P; Fürtig B; Heilemann M; Hengesbach M; Schwalbe H
    Nucleic Acids Res; 2017 May; 45(9):5512-5522. PubMed ID: 28204648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain.
    Buck J; Noeske J; Wöhnert J; Schwalbe H
    Nucleic Acids Res; 2010 Jul; 38(12):4143-53. PubMed ID: 20200045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer.
    Bao L; Wang J; Xiao Y
    Phys Rev E; 2019 Aug; 100(2-1):022412. PubMed ID: 31574664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering a structure switching mechanism into a steroid-binding aptamer and hydrodynamic analysis of the ligand binding mechanism.
    Reinstein O; Neves MA; Saad M; Boodram SN; Lombardo S; Beckham SA; Brouwer J; Audette GF; Groves P; Wilce MC; Johnson PE
    Biochemistry; 2011 Nov; 50(43):9368-76. PubMed ID: 21942676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural principles of nucleoside selectivity in a 2'-deoxyguanosine riboswitch.
    Pikovskaya O; Polonskaia A; Patel DJ; Serganov A
    Nat Chem Biol; 2011 Aug; 7(10):748-55. PubMed ID: 21841796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer.
    Trausch JJ; Ceres P; Reyes FE; Batey RT
    Structure; 2011 Oct; 19(10):1413-23. PubMed ID: 21906956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining a stem length-dependent binding mechanism for the cocaine-binding aptamer. A combined NMR and calorimetry study.
    Neves MA; Reinstein O; Johnson PE
    Biochemistry; 2010 Oct; 49(39):8478-87. PubMed ID: 20735071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into the interactions of xpt riboswitch with novel guanine analogues: a molecular dynamics simulation study.
    Jain SS; Sonavane UB; Uppuladinne MV; McLaughlin EC; Wang W; Black S; Joshi RR
    J Biomol Struct Dyn; 2015; 33(2):234-43. PubMed ID: 24404773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation.
    Gong Z; Zhao Y; Chen C; Xiao Y
    J Biomol Struct Dyn; 2011 Oct; 29(2):403-16. PubMed ID: 21875158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.