These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28115631)

  • 21. Noncovalent spin labeling of riboswitch RNAs to obtain long-range structural NMR restraints.
    Helmling C; Bessi I; Wacker A; Schnorr KA; Jonker HR; Richter C; Wagner D; Kreibich M; Schwalbe H
    ACS Chem Biol; 2014 Jun; 9(6):1330-9. PubMed ID: 24673892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular sensing by the aptamer domain of the FMN riboswitch: a general model for ligand binding by conformational selection.
    Vicens Q; Mondragón E; Batey RT
    Nucleic Acids Res; 2011 Oct; 39(19):8586-98. PubMed ID: 21745821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pseudoknot preorganization of the preQ1 class I riboswitch.
    Santner T; Rieder U; Kreutz C; Micura R
    J Am Chem Soc; 2012 Jul; 134(29):11928-31. PubMed ID: 22775200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The asymmetry and cooperativity of tandem glycine riboswitch aptamers.
    Torgerson CD; Hiller DA; Strobel SA
    RNA; 2020 May; 26(5):564-580. PubMed ID: 31992591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic regulation mechanism of the yjdF riboswitch.
    Gong S; Wang Y; Wang Z; Wang Y; Zhang W
    J Theor Biol; 2018 Feb; 439():152-159. PubMed ID: 29223402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMR Structural Profiling of Transcriptional Intermediates Reveals Riboswitch Regulation by Metastable RNA Conformations.
    Helmling C; Wacker A; Wolfinger MT; Hofacker IL; Hengesbach M; Fürtig B; Schwalbe H
    J Am Chem Soc; 2017 Feb; 139(7):2647-2656. PubMed ID: 28134517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design.
    Aboul-ela F; Huang W; Abd Elrahman M; Boyapati V; Li P
    Wiley Interdiscip Rev RNA; 2015; 6(6):631-50. PubMed ID: 26361734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Core requirements of the adenine riboswitch aptamer for ligand binding.
    Lemay JF; Lafontaine DA
    RNA; 2007 Mar; 13(3):339-50. PubMed ID: 17200422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quinine binding by the cocaine-binding aptamer. Thermodynamic and hydrodynamic analysis of high-affinity binding of an off-target ligand.
    Reinstein O; Yoo M; Han C; Palmo T; Beckham SA; Wilce MC; Johnson PE
    Biochemistry; 2013 Dec; 52(48):8652-62. PubMed ID: 24175947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain.
    Noeske J; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(15):5262-73. PubMed ID: 17686787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA-rescuable allosteric inhibition of aptamer II ligand affinity by aptamer I element in the shortened Vibrio cholerae glycine riboswitch.
    Sherman EM; Elsayed G; Esquiaqui JM; Elsayed M; Brinda B; Ye JD
    J Biochem; 2014 Dec; 156(6):323-31. PubMed ID: 25092436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The kinetics of ligand binding by an adenine-sensing riboswitch.
    Wickiser JK; Cheah MT; Breaker RR; Crothers DM
    Biochemistry; 2005 Oct; 44(40):13404-14. PubMed ID: 16201765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploiting preQ(1) riboswitches to regulate ribosomal frameshifting.
    Yu CH; Luo J; Iwata-Reuyl D; Olsthoorn RC
    ACS Chem Biol; 2013 Apr; 8(4):733-40. PubMed ID: 23327288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy.
    Ruff KM; Strobel SA
    RNA; 2014 Nov; 20(11):1775-88. PubMed ID: 25246650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Variants of the guanine riboswitch class exhibit altered ligand specificities for xanthine, guanine, or 2'-deoxyguanosine.
    Hamal Dhakal S; Panchapakesan SSS; Slattery P; Roth A; Breaker RR
    Proc Natl Acad Sci U S A; 2022 May; 119(22):e2120246119. PubMed ID: 35622895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NMR resonance assignments for the class II GTP binding RNA aptamer in complex with GTP.
    Wolter AC; Duchardt-Ferner E; Nasiri AH; Hantke K; Wunderlich CH; Kreutz C; Wöhnert J
    Biomol NMR Assign; 2016 Apr; 10(1):101-5. PubMed ID: 26373429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. E88, a new cyclic-di-GMP class I riboswitch aptamer from Clostridium tetani, has a similar fold to the prototypical class I riboswitch, Vc2, but differentially binds to c-di-GMP analogs.
    Luo Y; Chen B; Zhou J; Sintim HO; Dayie TK
    Mol Biosyst; 2014 Mar; 10(3):384-90. PubMed ID: 24430255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The conformational landscape of transcription intermediates involved in the regulation of the ZMP-sensing riboswitch from Thermosinus carboxydivorans.
    Binas O; Schamber T; Schwalbe H
    Nucleic Acids Res; 2020 Jul; 48(12):6970-6979. PubMed ID: 32479610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Singlet glycine riboswitches bind ligand as well as tandem riboswitches.
    Ruff KM; Muhammad A; McCown PJ; Breaker RR; Strobel SA
    RNA; 2016 Nov; 22(11):1728-1738. PubMed ID: 27659053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.