These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 28115770)
1. Effects of heat and pH treatments and in vitro digestion on the biological activity of protein hydrolysates of López-Sánchez J; Ponce-Alquicira E; Pedroza-Islas R; de la Peña-Díaz A; Soriano-Santos J J Food Sci Technol; 2016 Dec; 53(12):4298-4307. PubMed ID: 28115770 [TBL] [Abstract][Full Text] [Related]
2. Angiotensin I-Converting Enzyme inhibitory and antioxidant activities and surfactant properties of protein hydrolysates as obtained of Amaranthus hypochondriacus L. grain. Soriano-Santos J; Escalona-Buendía H J Food Sci Technol; 2015 Apr; 52(4):2073-82. PubMed ID: 25829587 [TBL] [Abstract][Full Text] [Related]
3. Screening of whey protein isolate hydrolysates for their dual functionality: influence of heat pre-treatment and enzyme specificity. Adjonu R; Doran G; Torley P; Agboola S Food Chem; 2013 Feb; 136(3-4):1435-43. PubMed ID: 23194546 [TBL] [Abstract][Full Text] [Related]
4. Angiotensin-I converting enzyme inhibitory activity of Amaranthus hypochondriacus seed protein hydrolysates produced with lactic bacteria and their peptidomic profiles. Sánchez-López F; Robles-Olvera VJ; Hidalgo-Morales M; Tsopmo A Food Chem; 2021 Nov; 363():130320. PubMed ID: 34146770 [TBL] [Abstract][Full Text] [Related]
5. Extrusion improved the anti-inflammatory effect of amaranth (Amaranthus hypochondriacus) hydrolysates in LPS-induced human THP-1 macrophage-like and mouse RAW 264.7 macrophages by preventing activation of NF-κB signaling. Montoya-Rodríguez A; de Mejía EG; Dia VP; Reyes-Moreno C; Milán-Carrillo J Mol Nutr Food Res; 2014 May; 58(5):1028-41. PubMed ID: 24431078 [TBL] [Abstract][Full Text] [Related]
6. Investigation on antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activity of Bambara bean protein hydrolysates. Mune Mune MA; Minka SR; Henle T Food Chem; 2018 Jun; 250():162-169. PubMed ID: 29412907 [TBL] [Abstract][Full Text] [Related]
7. Impact of commercial precooking of common bean (Phaseolus vulgaris) on the generation of peptides, after pepsin-pancreatin hydrolysis, capable to inhibit dipeptidyl peptidase-IV. Mojica L; Chen K; de Mejía EG J Food Sci; 2015 Jan; 80(1):H188-98. PubMed ID: 25495131 [TBL] [Abstract][Full Text] [Related]
8. Characterization and ACE-inhibitory activity of amaranth proteins. Tiengo A; Faria M; Netto FM J Food Sci; 2009 Jun; 74(5):H121-6. PubMed ID: 19646044 [TBL] [Abstract][Full Text] [Related]
9. Bioactivity of hydrolysates obtained from bovine casein using artichoke (Cynara scolymus L.) proteases. Bueno-Gavilá E; Abellán A; Girón-Rodríguez F; Cayuela JM; Salazar E; Gómez R; Tejada L J Dairy Sci; 2019 Dec; 102(12):10711-10723. PubMed ID: 31548055 [TBL] [Abstract][Full Text] [Related]
10. Characterization of peptides found in unprocessed and extruded amaranth (Amaranthus hypochondriacus) pepsin/pancreatin hydrolysates. Montoya-Rodríguez A; Milán-Carrillo J; Reyes-Moreno C; González de Mejía E Int J Mol Sci; 2015 Apr; 16(4):8536-54. PubMed ID: 25894223 [TBL] [Abstract][Full Text] [Related]
11. Characterisation of the in vitro bioactive properties of alkaline and enzyme extracted brewers' spent grain protein hydrolysates. Connolly A; Cermeño M; Crowley D; O'Callaghan Y; O'Brien NM; FitzGerald RJ Food Res Int; 2019 Jul; 121():524-532. PubMed ID: 31108777 [TBL] [Abstract][Full Text] [Related]
12. Release of multifunctional peptides from kiwicha (Amaranthus caudatus) protein under in vitro gastrointestinal digestion. Vilcacundo R; Martínez-Villaluenga C; Miralles B; Hernández-Ledesma B J Sci Food Agric; 2019 Feb; 99(3):1225-1232. PubMed ID: 30066387 [TBL] [Abstract][Full Text] [Related]
13. Antiproliferative, ACE-inhibitory and functional properties of protein hydrolysates from rohu (Labeo rohita) roe (egg) prepared by gastrointestinal proteases. Chalamaiah M; Jyothirmayi T; Diwan PV; Dinesh Kumar B J Food Sci Technol; 2015 Dec; 52(12):8300-7. PubMed ID: 26604407 [TBL] [Abstract][Full Text] [Related]
14. In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Velarde-Salcedo AJ; Barrera-Pacheco A; Lara-González S; Montero-Morán GM; Díaz-Gois A; González de Mejia E; Barba de la Rosa AP Food Chem; 2013 Jan; 136(2):758-64. PubMed ID: 23122124 [TBL] [Abstract][Full Text] [Related]
15. In vitro Angiotesin-1-converting enzyme, α-amylase and α-glucosidase inhibitory and antioxidant activities of Arise RO; Idi JJ; Mic-Braimoh IM; Korode E; Ahmed RN; Osemwegie O Heliyon; 2019 May; 5(5):e01634. PubMed ID: 31193002 [TBL] [Abstract][Full Text] [Related]
16. Biochemical Properties of a Partially Purified Protease from Bacillus sp. CL18 and Its Use to Obtain Bioactive Soy Protein Hydrolysates. Lermen AM; Clerici NJ; Daroit DJ Appl Biochem Biotechnol; 2020 Oct; 192(2):643-664. PubMed ID: 32504245 [TBL] [Abstract][Full Text] [Related]
17. Comparative peptidomic profile and bioactivities of cooked beef, pork, chicken and turkey meat after in vitro gastro-intestinal digestion. Martini S; Conte A; Tagliazucchi D J Proteomics; 2019 Sep; 208():103500. PubMed ID: 31454557 [TBL] [Abstract][Full Text] [Related]