These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 28116363)

  • 1. Photoresponsive, reversible immobilization of virus particles on supramolecular platforms.
    Weineisen NL; Hommersom CA; Voskuhl J; Sankaran S; Depauw AM; Katsonis N; Jonkheijm P; Cornelissen JJ
    Chem Commun (Camb); 2017 Feb; 53(11):1896-1899. PubMed ID: 28116363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compartmentalized supramolecular hydrogels based on viral nanocages towards sophisticated cargo administration.
    Yang L; Liu A; de Ruiter MV; Hommersom CA; Katsonis N; Jonkheijm P; Cornelissen JJLM
    Nanoscale; 2018 Feb; 10(8):4123-4129. PubMed ID: 29436545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encapsulation and crystallization of Prussian blue nanoparticles by cowpea chlorotic mottle virus capsids.
    Wu Y; Yang H; Shin HJ
    Biotechnol Lett; 2014 Mar; 36(3):515-21. PubMed ID: 24190479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatile post-functionalization of the external shell of cowpea chlorotic mottle virus by using click chemistry.
    Hommersom CA; Matt B; van der Ham A; Cornelissen JJ; Katsonis N
    Org Biomol Chem; 2014 Jun; 12(24):4065-9. PubMed ID: 24817149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoresponsive supramolecular complexes as efficient DNA regulator.
    Cheng HB; Zhang YM; Xu C; Liu Y
    Sci Rep; 2014 Feb; 4():4210. PubMed ID: 24572680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocontrol over cucurbit[8]uril complexes: stoichiometry and supramolecular polymers.
    del Barrio J; Horton PN; Lairez D; Lloyd GO; Toprakcioglu C; Scherman OA
    J Am Chem Soc; 2013 Aug; 135(32):11760-3. PubMed ID: 23879174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hollow mesoporous raspberry-like colloids with removable caps as photoresponsive nanocontainers.
    Hu C; West KR; Scherman OA
    Nanoscale; 2016 Apr; 8(15):7840-4. PubMed ID: 27010833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoresponsive Cucurbit[8]uril-Mediated Adhesion of Bacteria on Supported Lipid Bilayers.
    Sankaran S; van Weerd J; Voskuhl J; Karperien M; Jonkheijm P
    Small; 2015 Dec; 11(46):6187-96. PubMed ID: 26469773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cargo-loading of hybrid cowpea chlorotic mottle virus capsids via a co-expression approach.
    Timmermans SBPE; Mesman R; Blezer KJR; van Niftrik L; van Hest JCM
    Virology; 2022 Dec; 577():99-104. PubMed ID: 36335770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoresponsive hybrid raspberry-like colloids based on cucurbit[8]uril host-guest interactions.
    Lan Y; Wu Y; Karas A; Scherman OA
    Angew Chem Int Ed Engl; 2014 Feb; 53(8):2166-9. PubMed ID: 24446350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular Protein Immobilization on Lipid Bilayers.
    Bosmans RP; Hendriksen WE; Verheijden M; Eelkema R; Jonkheijm P; van Esch JH; Brunsveld L
    Chemistry; 2015 Dec; 21(50):18466-73. PubMed ID: 26527541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple technique for separation of Cowpea chlorotic mottle virus from Cucumber mosaic virus in natural mixed infections.
    Ali A; Roossinck MJ
    J Virol Methods; 2008 Nov; 153(2):163-7. PubMed ID: 18755217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of Cowpea chlorotic mottle virus-like particles as scaffold for epitope presentations.
    Hassani-Mehraban A; Creutzburg S; van Heereveld L; Kormelink R
    BMC Biotechnol; 2015 Aug; 15():80. PubMed ID: 26311254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-ion-induced formation and stabilization of protein cages based on the cowpea chlorotic mottle virus.
    Minten IJ; Wilke KD; Hendriks LJ; van Hest JC; Nolte RJ; Cornelissen JJ
    Small; 2011 Apr; 7(7):911-9. PubMed ID: 21381194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual Visible Light-Triggered Photoswitch of a Diarylethene Supramolecular Assembly with Cucurbit[8]uril.
    Liu G; Zhang YM; Wang C; Liu Y
    Chemistry; 2017 Oct; 23(58):14425-14429. PubMed ID: 28880426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-selective immobilization of colloids on Au substrates via a noncovalent supramolecular "handcuff".
    Tian F; Cheng N; Nouvel N; Geng J; Scherman OA
    Langmuir; 2010 Apr; 26(8):5323-8. PubMed ID: 20337412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and efficient purification of Cowpea chlorotic mottle virus by sucrose cushion ultracentrifugation.
    Ali A; Roossinck MJ
    J Virol Methods; 2007 Apr; 141(1):84-6. PubMed ID: 17188758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The methyltransferase domain of the 1a protein of cowpea chlorotic mottle virus controls local and systemic accumulation in cowpea.
    Quan S; Nelson RS; Deom CM
    Arch Virol; 2008; 153(8):1505-16. PubMed ID: 18604602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural transitions in Cowpea chlorotic mottle virus (CCMV).
    Liepold LO; Revis J; Allen M; Oltrogge L; Young M; Douglas T
    Phys Biol; 2005 Nov; 2(4):S166-72. PubMed ID: 16280622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and self-assembly of cowpea chlorotic mottle virus-like particles in Pseudomonas fluorescens.
    Phelps JP; Dao P; Jin H; Rasochova L
    J Biotechnol; 2007 Feb; 128(2):290-6. PubMed ID: 17113675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.