These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 28116601)
1. Assessment of environmental loads of Cu and Zn from intensive inland shrimp aquaculture. León-Cañedo JA; Alarcón-Silvas SG; Fierro-Sañudo JF; Mariscal-Lagarda MM; Díaz-Valdés T; Páez-Osuna F Environ Monit Assess; 2017 Feb; 189(2):69. PubMed ID: 28116601 [TBL] [Abstract][Full Text] [Related]
2. Metal content of the gulf of California blue shrimp Litopenaeus stylirostris (Stimpson). Frías-Espericueta MG; Izaguirre-Fierro G; Valenzuela-Quiñonez F; Osuna-López JI; Voltolina D; López-López G; Muy-Rangel MD; Rubio-Castro W Bull Environ Contam Toxicol; 2007 Aug; 79(2):214-7. PubMed ID: 17639322 [TBL] [Abstract][Full Text] [Related]
3. Monitoring of inland waters for culturing shrimp Litopenaeus vannamei: application of a method based on survival and chemical composition. Valencia-Castañeda G; Millán-Almaraz MI; Fierro-Sañudo JF; Fregoso-López MG; Páez-Osuna F Environ Monit Assess; 2017 Aug; 189(8):395. PubMed ID: 28710691 [TBL] [Abstract][Full Text] [Related]
4. Fate of copper in intensive shrimp farms: bioaccumulation and deposition in pond sediments. Lacerda LD; Santos JA; Lopes DV Braz J Biol; 2009 Aug; 69(3):851-8. PubMed ID: 19802444 [TBL] [Abstract][Full Text] [Related]
5. Mercury emission factors from intensive shrimp aquaculture and their relative importance to the Jaguaribe River Estuary, NE Brazil. Lacerda LD; Soares TM; Costa BG; Godoy MD Bull Environ Contam Toxicol; 2011 Dec; 87(6):657-61. PubMed ID: 21922284 [TBL] [Abstract][Full Text] [Related]
6. Microplastics and heavy metals in shrimp Litopenaeus vannamei from the SAMARE lagoon, Gulf of California: Is it a case of combined MPs-Zn pollution in gills? Páez-Osuna F; Valencia-Castañeda G; Rodríguez Valenzuela O; Frías-Espericueta MG Environ Pollut; 2023 Nov; 336():122479. PubMed ID: 37652226 [TBL] [Abstract][Full Text] [Related]
7. Changes in metal contents in shrimp cultured in NW Mexico (2000-2010). Frías-Espericueta MG; Osuna-López JI; Delgado-Alvarez CG; Muy-Rangel MD; López-López G; Izaguirre-Fierro G; Jaimes-Bustamante F; Zazueta-Padilla HM; Aguilar-Juárez M; Rubio-Carrasco W; Voltolina D Environ Monit Assess; 2015 May; 187(5):269. PubMed ID: 25893762 [TBL] [Abstract][Full Text] [Related]
8. Concentrations of selected trace metals (Cu, Pb, Zn), organochlorines (PCBs, HCB) and total PAHs in mangrove oysters from the Pacific Coast of Mexico: an overview. Páez-Osuna F; Ruiz-Fernández AC; Botello AV; Ponce-Vélez G; Osuna-López JI; Frías-Espericueta MG; López-López G; Zazueta-Padilla HM Mar Pollut Bull; 2002 Nov; 44(11):1303-8. PubMed ID: 12523531 [No Abstract] [Full Text] [Related]
9. Distribution of trace elements in tissues of two shrimp species from the Persian Gulf and roles of metallothionein in their redistribution. Pourang N; Dennis JH Environ Int; 2005 Apr; 31(3):325-41. PubMed ID: 15734186 [TBL] [Abstract][Full Text] [Related]
10. Bioaccumulation of trace metals in farmed pacific oysters Crassostrea gigas from SW Gulf of California coast, Mexico. Jonathan MP; Muñoz-Sevilla NP; Góngora-Gómez AM; Luna Varela RG; Sujitha SB; Escobedo-Urías DC; Rodríguez-Espinosa PF; Campos Villegas LE Chemosphere; 2017 Nov; 187():311-319. PubMed ID: 28858712 [TBL] [Abstract][Full Text] [Related]
11. Microplastics in the tissues of commercial semi-intensive shrimp pond-farmed Litopenaeus vannamei from the Gulf of California ecoregion. Valencia-Castañeda G; Ruiz-Fernández AC; Frías-Espericueta MG; Rivera-Hernández JR; Green-Ruiz CR; Páez-Osuna F Chemosphere; 2022 Jun; 297():134194. PubMed ID: 35248598 [TBL] [Abstract][Full Text] [Related]
12. Copper emission factors from intensive shrimp aquaculture. Lacerda LD; Santos JA; Madrid RM Mar Pollut Bull; 2006 Dec; 52(12):1823-6. PubMed ID: 17069862 [No Abstract] [Full Text] [Related]
13. Utilization of metal and radionuclide concentrations to assess the influence of shrimp farming on the geochemical characteristics of sediments. Dos Santos JGG; Lopes JM; Hadlich GM; da Silva AX; de Jesus Silva M; Moreira ÍTA Environ Geochem Health; 2024 Jun; 46(7):245. PubMed ID: 38858271 [TBL] [Abstract][Full Text] [Related]
14. Assessment of the labile fractions of copper and zinc in marinas and port areas in Southern Brazil. Costa LD; Wallner-Kersanach M Environ Monit Assess; 2013 Aug; 185(8):6767-81. PubMed ID: 23475526 [TBL] [Abstract][Full Text] [Related]
15. Risk assessment of heavy metal contamination in shrimp farming in Mai Po Nature Reserve, Hong Kong. Cheung KC; Wong MH Environ Geochem Health; 2006; 28(1-2):27-36. PubMed ID: 16528597 [TBL] [Abstract][Full Text] [Related]
17. Mercury content and their risk assessment in farmed shrimp Litopenaeus vannamei from NW Mexico. Delgado-Alvarez CG; Ruelas-Inzunza J; Osuna-López JI; Voltolina D; Frías-Espericueta MG Chemosphere; 2015 Jan; 119():1015-1020. PubMed ID: 25303662 [TBL] [Abstract][Full Text] [Related]
18. Trace metals in two commercial shrimps from southeast Brazil: Baseline records before large port activities in coastal waters. Di Beneditto APM; Semensato XEG; Carvalho CEV; Rezende CE Mar Pollut Bull; 2019 Sep; 146():667-670. PubMed ID: 31426206 [TBL] [Abstract][Full Text] [Related]
19. Peruvian scallop Argopecten purpuratus: From a key aquaculture species to a promising biondicator species. Loaiza I; Pillet M; De Boeck G; De Troch M Chemosphere; 2020 Jan; 239():124767. PubMed ID: 31518925 [TBL] [Abstract][Full Text] [Related]
20. Bioavailability of cadmium, copper, mercury, lead, and zinc in subtropical coastal lagoons from the southeast Gulf of California using mangrove oysters (Crassostrea corteziensis and Crassostrea palmula). Páez-Osuna F; Osuna-Martínez CC Arch Environ Contam Toxicol; 2015 Feb; 68(2):305-16. PubMed ID: 25556031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]