BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 28116688)

  • 1. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland.
    Lund M; Stiegler C; Abermann J; Citterio M; Hansen BU; van As D
    Ambio; 2017 Feb; 46(Suppl 1):81-93. PubMed ID: 28116688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local snow melt and temperature-but not regional sea ice-explain variation in spring phenology in coastal Arctic tundra.
    Assmann JJ; Myers-Smith IH; Phillimore AB; Bjorkman AD; Ennos RE; Prevéy JS; Henry GHR; Schmidt NM; Hollister RD
    Glob Chang Biol; 2019 Jul; 25(7):2258-2274. PubMed ID: 30963662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century.
    Hollesen J; Buchwal A; Rachlewicz G; Hansen BU; Hansen MO; Stecher O; Elberling B
    Glob Chang Biol; 2015 Jun; 21(6):2410-23. PubMed ID: 25788025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A synthesis of the arctic terrestrial and marine carbon cycles under pressure from a dwindling cryosphere.
    Parmentier FW; Christensen TR; Rysgaard S; Bendtsen J; Glud RN; Else B; van Huissteden J; Sachs T; Vonk JE; Sejr MK
    Ambio; 2017 Feb; 46(Suppl 1):53-69. PubMed ID: 28116680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drivers of contemporary and future changes in Arctic seasonal transition dates for a tundra site in coastal Greenland.
    Liu Y; Wang P; Elberling B; Westergaard-Nielsen A
    Glob Chang Biol; 2024 Jan; 30(1):e17118. PubMed ID: 38273573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet.
    Keegan KM; Albert MR; McConnell JR; Baker I
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):7964-7. PubMed ID: 24843158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic.
    Williamson SN; Barrio IC; Hik DS; Gamon JA
    Glob Chang Biol; 2016 Nov; 22(11):3621-3631. PubMed ID: 27158930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Landscape impacts of 3D-seismic surveys in the Arctic National Wildlife Refuge, Alaska.
    Raynolds MK; Jorgenson JC; Jorgenson MT; Kanevskiy M; Liljedahl AK; Nolan M; Sturm M; Walker DA
    Ecol Appl; 2020 Oct; 30(7):e02143. PubMed ID: 32335990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-scale regulation of seasonal microclimate by vegetation and snow in the Arctic tundra.
    von Oppen J; Assmann JJ; Bjorkman AD; Treier UA; Elberling B; Nabe-Nielsen J; Normand S
    Glob Chang Biol; 2022 Dec; 28(24):7296-7312. PubMed ID: 36083034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra.
    Blanc-Betes E; Welker JM; Sturchio NC; Chanton JP; Gonzalez-Meler MA
    Glob Chang Biol; 2016 Aug; 22(8):2818-33. PubMed ID: 26851545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergent shrub-cover responses driven by climate, wildfire, and permafrost interactions in Arctic tundra ecosystems.
    Chen Y; Hu FS; Lara MJ
    Glob Chang Biol; 2021 Feb; 27(3):652-663. PubMed ID: 33216446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to warming in High Arctic tundra.
    Blok D; Faucherre S; Banyasz I; Rinnan R; Michelsen A; Elberling B
    Glob Chang Biol; 2018 Jun; 24(6):2660-2672. PubMed ID: 29235209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vegetation type is an important predictor of the arctic summer land surface energy budget.
    Oehri J; Schaepman-Strub G; Kim JS; Grysko R; Kropp H; Grünberg I; Zemlianskii V; Sonnentag O; Euskirchen ES; Reji Chacko M; Muscari G; Blanken PD; Dean JF; di Sarra A; Harding RJ; Sobota I; Kutzbach L; Plekhanova E; Riihelä A; Boike J; Miller NB; Beringer J; López-Blanco E; Stoy PC; Sullivan RC; Kejna M; Parmentier FW; Gamon JA; Mastepanov M; Wille C; Jackowicz-Korczynski M; Karger DN; Quinton WL; Putkonen J; van As D; Christensen TR; Hakuba MZ; Stone RS; Metzger S; Vandecrux B; Frost GV; Wild M; Hansen B; Meloni D; Domine F; Te Beest M; Sachs T; Kalhori A; Rocha AV; Williamson SN; Morris S; Atchley AL; Essery R; Runkle BRK; Holl D; Riihimaki LD; Iwata H; Schuur EAG; Cox CJ; Grachev AA; McFadden JP; Fausto RS; Göckede M; Ueyama M; Pirk N; de Boer G; Bret-Harte MS; Leppäranta M; Steffen K; Friborg T; Ohmura A; Edgar CW; Olofsson J; Chambers SD
    Nat Commun; 2022 Oct; 13(1):6379. PubMed ID: 36316310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Arctic summer warming tracked by increased Cassiope tetragona growth in the world's northernmost polar desert.
    Weijers S; Buchwal A; Blok D; Löffler J; Elberling B
    Glob Chang Biol; 2017 Nov; 23(11):5006-5020. PubMed ID: 28464494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia.
    Forbes BC; Kumpula T; Meschtyb N; Laptander R; Macias-Fauria M; Zetterberg P; Verdonen M; Skarin A; Kim KY; Boisvert LN; Stroeve JC; Bartsch A
    Biol Lett; 2016 Nov; 12(11):. PubMed ID: 27852939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate.
    Eugster W; Rouse WR; Pielke RA; Mcfadden JP; Baldocchi DD; Kittel TGF; Chapin FS; Liston GE; Vidale PL; Vaganov E; Chambers S
    Glob Chang Biol; 2000 Dec; 6(S1):84-115. PubMed ID: 35026939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deltas, freshwater discharge, and waves along the Young Sound, NE Greenland.
    Kroon A; Abermann J; Bendixen M; Lund M; Sigsgaard C; Skov K; Hansen BU
    Ambio; 2017 Feb; 46(Suppl 1):132-145. PubMed ID: 28116682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term changes in the daytime growing season carbon dioxide exchange following increased temperature and snow cover in arctic tundra.
    Hermesdorf L; Liu Y; Michelsen A; Westergaard-Nielsen A; Mortensen LH; Jepsen MS; Sigsgaard C; Elberling B
    Glob Chang Biol; 2024 Jan; 30(1):e17087. PubMed ID: 38273494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Summer thaw duration is a strong predictor of the soil microbiome and its response to permafrost thaw in arctic tundra.
    Romanowicz KJ; Kling GW
    Environ Microbiol; 2022 Dec; 24(12):6220-6237. PubMed ID: 36135820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biogeography of red snow microbiomes and their role in melting arctic glaciers.
    Lutz S; Anesio AM; Raiswell R; Edwards A; Newton RJ; Gill F; Benning LG
    Nat Commun; 2016 Jun; 7():11968. PubMed ID: 27329445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.