These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 2811685)

  • 1. Two-dimensional nuclear Overhauser effect: complete relaxation matrix analysis.
    Borgias BA; James TL
    Methods Enzymol; 1989; 176():169-83. PubMed ID: 2811685
    [No Abstract]   [Full Text] [Related]  

  • 2. Rotating-frame nuclear Overhauser effect.
    Brown LR; Farmer BT
    Methods Enzymol; 1989; 176():199-216. PubMed ID: 2811687
    [No Abstract]   [Full Text] [Related]  

  • 3. Distance estimation from NOE data in macromolecular systems: a quadratic approach.
    Majumdar A; Hosur RV
    Biochem Biophys Res Commun; 1989 Mar; 159(3):886-92. PubMed ID: 2930572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of J-connectives and selective 1H-1H Overhauser effects in H2O solutions of biological macromolecules by two-dimensional NMR experiments.
    Kumar A; Wagner G; Ernst RR; Wüthrich K
    Biochem Biophys Res Commun; 1980 Oct; 96(3):1156-63. PubMed ID: 6159893
    [No Abstract]   [Full Text] [Related]  

  • 5. Reconstruction of NOESY maps. A requirement for a reliable conformational analysis of biomolecules using 2D NMR.
    Marion D; Genest M; Ptak M
    Biophys Chem; 1987 Dec; 28(3):235-44. PubMed ID: 3440124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes.
    Lipari G; Szabo A
    Biophys J; 1980 Jun; 30(3):489-506. PubMed ID: 7260284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective water resonance suppression in 1D- and 2D-FT-1H-NMR spectroscopy of biopolymers in aqueous solution.
    Haasnoot CA; Hilbers CW
    Biopolymers; 1983 May; 22(5):1259-66. PubMed ID: 6871375
    [No Abstract]   [Full Text] [Related]  

  • 8. Determination of ligand conformation in macromolecular complexes using the transferred nuclear Overhauser effect.
    Gronenborn AM; Clore GM
    Biochem Pharmacol; 1990 Jul; 40(1):115-9. PubMed ID: 2372302
    [No Abstract]   [Full Text] [Related]  

  • 9. One-dimensional nuclear Overhauser effects and peak intensity measurements.
    Ferretti JA; Weiss GH
    Methods Enzymol; 1989; 176():3-11. PubMed ID: 2811691
    [No Abstract]   [Full Text] [Related]  

  • 10. Applications of natural-abundance nitrogen-15 nuclear magnetic resonance to large biochemically important molecules.
    Gust D; Moon RB; Roberts JD
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4696-700. PubMed ID: 1107997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative binding of n-mers with steric hindrance to finite and infinite one-dimensional lattices.
    Tsuchiya T; Szabo A
    Biopolymers; 1982 May; 21(5):979-84. PubMed ID: 7082772
    [No Abstract]   [Full Text] [Related]  

  • 12. Molecular polarizability in conformational analysis of biopolymers.
    Rama Murthy V
    Indian J Biochem Biophys; 1979 Feb; 16(1):32-6. PubMed ID: 489046
    [No Abstract]   [Full Text] [Related]  

  • 13. [Multicenter model of conformation transitions in biopolymers. I. Equilibrium transition curve].
    Gukovskiĭ IIa; Sukhorukov BI
    Biofizika; 1974; 19(3):415-9. PubMed ID: 4424660
    [No Abstract]   [Full Text] [Related]  

  • 14. Applications of multinuclear NMR in the solid state to structural and dynamical problems in macromolecular chemistry.
    Bryant RG; Kennedy SD; Jackson CL; Eads TM; Croasmun WR; Blaurock AE
    Basic Life Sci; 1990; 56():255-71. PubMed ID: 2078173
    [No Abstract]   [Full Text] [Related]  

  • 15. The two-dimensional transferred nuclear Overhauser effect: theory and practice.
    Campbell AP; Sykes BD
    Annu Rev Biophys Biomol Struct; 1993; 22():99-122. PubMed ID: 8348000
    [No Abstract]   [Full Text] [Related]  

  • 16. Ligand conformations and ligand-enzyme interactions as studied by the nuclear Overhauser effect.
    Rosevear PR; Mildvan AS
    Methods Enzymol; 1989; 177():333-58. PubMed ID: 2607987
    [No Abstract]   [Full Text] [Related]  

  • 17. Diffusion-controlled macromolecular interactions.
    Berg OG; von Hippel PH
    Annu Rev Biophys Biophys Chem; 1985; 14():131-60. PubMed ID: 3890878
    [No Abstract]   [Full Text] [Related]  

  • 18. On an exact starting expression for macromolecular hydrodynamic models.
    Wegener WA
    Biopolymers; 1986 Apr; 25(4):627-37. PubMed ID: 3708107
    [No Abstract]   [Full Text] [Related]  

  • 19. Dielectric behavior of polyelectrolytes. VI. Dynamic response of cylindrical biopolymers to electric fields.
    Sonnen WE; Wesenberg GE; Vaughan WE
    Biophys Chem; 1988 Dec; 32(2-3):283-95. PubMed ID: 3251572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random matrix theory in biological nuclear magnetic resonance spectroscopy.
    Lacelle S
    Biophys J; 1984 Aug; 46(2):181-6. PubMed ID: 6478032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.