These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 28116858)
1. A Copolymer Scaffold Functionalized with Nanodiamond Particles Enhances Osteogenic Metabolic Activity and Bone Regeneration. Yassin MA; Mustafa K; Xing Z; Sun Y; Fasmer KE; Waag T; Krueger A; Steinmüller-Nethl D; Finne-Wistrand A; Leknes KN Macromol Biosci; 2017 Jun; 17(6):. PubMed ID: 28116858 [TBL] [Abstract][Full Text] [Related]
2. Growth and differentiation of bone marrow stromal cells on biodegradable polymer scaffolds: an in vitro study. Xue Y; Dånmark S; Xing Z; Arvidson K; Albertsson AC; Hellem S; Finne-Wistrand A; Mustafa K J Biomed Mater Res A; 2010 Dec; 95(4):1244-51. PubMed ID: 20939051 [TBL] [Abstract][Full Text] [Related]
3. Biological effects of functionalizing copolymer scaffolds with nanodiamond particles. Xing Z; Pedersen TO; Wu X; Xue Y; Sun Y; Finne-Wistrand A; Kloss FR; Waag T; Krueger A; Steinmüller-Nethl D; Mustafa K Tissue Eng Part A; 2013 Aug; 19(15-16):1783-91. PubMed ID: 23574424 [TBL] [Abstract][Full Text] [Related]
4. Surfactant tuning of hydrophilicity of porous degradable copolymer scaffolds promotes cellular proliferation and enhances bone formation. Yassin MA; Leknes KN; Sun Y; Lie SA; Finne-Wistrand A; Mustafa K J Biomed Mater Res A; 2016 Aug; 104(8):2049-59. PubMed ID: 27086867 [TBL] [Abstract][Full Text] [Related]
5. Cell seeding density is a critical determinant for copolymer scaffolds-induced bone regeneration. Yassin MA; Leknes KN; Pedersen TO; Xing Z; Sun Y; Lie SA; Finne-Wistrand A; Mustafa K J Biomed Mater Res A; 2015 Nov; 103(11):3649-58. PubMed ID: 26013960 [TBL] [Abstract][Full Text] [Related]
6. Polyester copolymer scaffolds enhance expression of bone markers in osteoblast-like cells. Idris SB; Arvidson K; Plikk P; Ibrahim S; Finne-Wistrand A; Albertsson AC; Bolstad AI; Mustafa K J Biomed Mater Res A; 2010 Aug; 94(2):631-9. PubMed ID: 20205238 [TBL] [Abstract][Full Text] [Related]
7. Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo. Suliman S; Xing Z; Wu X; Xue Y; Pedersen TO; Sun Y; Døskeland AP; Nickel J; Waag T; Lygre H; Finne-Wistrand A; Steinmüller-Nethl D; Krueger A; Mustafa K J Control Release; 2015 Jan; 197():148-57. PubMed ID: 25445698 [TBL] [Abstract][Full Text] [Related]
8. Effect of endothelial cells on bone regeneration using poly(L-lactide-co-1,5-dioxepan-2-one) scaffolds. Xing Z; Xue Y; Dånmark S; Schander K; Ostvold S; Arvidson K; Hellem S; Finne-Wistrand A; Albertsson AC; Mustafa K J Biomed Mater Res A; 2011 Feb; 96(2):349-57. PubMed ID: 21171154 [TBL] [Abstract][Full Text] [Related]
9. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T; Yang X; Qi X; Jiang C J Transl Med; 2015 May; 13():152. PubMed ID: 25952675 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering. Zhang K; Wang H; Huang C; Su Y; Mo X; Ikada Y J Biomed Mater Res A; 2010 Jun; 93(3):984-93. PubMed ID: 19722280 [TBL] [Abstract][Full Text] [Related]
12. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds. Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489 [TBL] [Abstract][Full Text] [Related]
13. Surfactant as a critical factor when tuning the hydrophilicity in three-dimensional polyester-based scaffolds: impact of hydrophilicity on their mechanical properties and the cellular response of human osteoblast-like cells. Sun Y; Xing Z; Xue Y; Mustafa K; Finne-Wistrand A; Albertsson AC Biomacromolecules; 2014 Apr; 15(4):1259-68. PubMed ID: 24559372 [TBL] [Abstract][Full Text] [Related]
14. Delivery of VEGFA in bone marrow stromal cells seeded in copolymer scaffold enhances angiogenesis, but is inadequate for osteogenesis as compared with the dual delivery of VEGFA and BMP2 in a subcutaneous mouse model. Sharma S; Sapkota D; Xue Y; Rajthala S; Yassin MA; Finne-Wistrand A; Mustafa K Stem Cell Res Ther; 2018 Jan; 9(1):23. PubMed ID: 29386057 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of bone regeneration through facile surface functionalization of solid freeform fabrication-based three-dimensional scaffolds using mussel adhesive proteins. Hong JM; Kim BJ; Shim JH; Kang KS; Kim KJ; Rhie JW; Cha HJ; Cho DW Acta Biomater; 2012 Jul; 8(7):2578-86. PubMed ID: 22480947 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Seyednejad H; Gawlitta D; Dhert WJ; van Nostrum CF; Vermonden T; Hennink WE Acta Biomater; 2011 May; 7(5):1999-2006. PubMed ID: 21241834 [TBL] [Abstract][Full Text] [Related]
17. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites. Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741 [TBL] [Abstract][Full Text] [Related]
18. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots. Zheng P; Yao Q; Mao F; Liu N; Xu Y; Wei B; Wang L Mol Med Rep; 2017 Oct; 16(4):5078-5084. PubMed ID: 28849142 [TBL] [Abstract][Full Text] [Related]
19. Surface-modified functionalized polycaprolactone scaffolds for bone repair: in vitro and in vivo experiments. Jensen J; Rölfing JH; Le DQ; Kristiansen AA; Nygaard JV; Hokland LB; Bendtsen M; Kassem M; Lysdahl H; Bünger CE J Biomed Mater Res A; 2014 Sep; 102(9):2993-3003. PubMed ID: 24123983 [TBL] [Abstract][Full Text] [Related]
20. Comparison of bone regenerative capacity of donor-matched human adipose-derived and bone marrow mesenchymal stem cells. Mohamed-Ahmed S; Yassin MA; Rashad A; Espedal H; Idris SB; Finne-Wistrand A; Mustafa K; Vindenes H; Fristad I Cell Tissue Res; 2021 Mar; 383(3):1061-1075. PubMed ID: 33242173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]