BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28116899)

  • 1. Transmembrane Pathways and Mechanisms of Rod-like Paclitaxel Nanocrystals through MDCK Polarized Monolayer.
    Deng F; Zhang H; Wang X; Zhang Y; Hu H; Song S; Dai W; He B; Zheng Y; Wang X; Zhang Q
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):5803-5816. PubMed ID: 28116899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of oridonin nanocrystals and study of their endocytosis and transcytosis behaviours on MDCK polarized epithelial cells.
    Sheng H; Zhang Y; Nai J; Wang S; Dai M; Lin G; Zhu L; Zhang Q
    Pharm Biol; 2020 Dec; 58(1):518-527. PubMed ID: 32501184
    [No Abstract]   [Full Text] [Related]  

  • 3. Transport Mechanism of Coumarin 6 Nanocrystals with Two Particle Sizes in MDCKII Monolayer and Larval Zebrafish.
    Miao X; Li Y; Wang X; Lee SM; Zheng Y
    ACS Appl Mater Interfaces; 2016 May; 8(20):12620-30. PubMed ID: 27159431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport pathways of solid lipid nanoparticles across Madin-Darby canine kidney epithelial cell monolayer.
    Chai GH; Hu FQ; Sun J; Du YZ; You J; Yuan H
    Mol Pharm; 2014 Oct; 11(10):3716-26. PubMed ID: 25197948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of hydrophilic and hydrophobic structure of amphiphilic polymeric micelles on their transport in epithelial MDCK cells.
    Yu C; He B; Xiong MH; Zhang H; Yuan L; Ma L; Dai WB; Wang J; Wang XL; Wang XQ; Zhang Q
    Biomaterials; 2013 Aug; 34(26):6284-98. PubMed ID: 23714243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transport pathways of polymer nanoparticles in MDCK epithelial cells.
    He B; Jia Z; Du W; Yu C; Fan Y; Dai W; Yuan L; Zhang H; Wang X; Wang J; Zhang X; Zhang Q
    Biomaterials; 2013 Jun; 34(17):4309-26. PubMed ID: 23478037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of particle shapes on the oral delivery of drug nanocrystals: Mucus permeation, transepithelial transport and bioavailability.
    Guo M; Wei M; Li W; Guo M; Guo C; Ma M; Wang Y; Yang Z; Li M; Fu Q; Yang L; He Z
    J Control Release; 2019 Aug; 307():64-75. PubMed ID: 31207275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the role of Pluronic-g-Cationic polyelectrolyte as functional stabilizer for nanocrystals: Impact on Paclitaxel oral bioavailability and tumor growth.
    Sharma S; Verma A; Pandey G; Mittapelly N; Mishra PR
    Acta Biomater; 2015 Oct; 26():169-83. PubMed ID: 26265061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells.
    He B; Lin P; Jia Z; Du W; Qu W; Yuan L; Dai W; Zhang H; Wang X; Wang J; Zhang X; Zhang Q
    Biomaterials; 2013 Aug; 34(25):6082-98. PubMed ID: 23694903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of paclitaxel nanocrystals surface charge on cell internalization.
    Choi JS; Park JS
    Eur J Pharm Sci; 2016 Oct; 93():90-6. PubMed ID: 27516149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of PEGylated paclitaxel nanocrystals on breast cancer and its lung metastasis.
    Zhang H; Hu H; Zhang H; Dai W; Wang X; Wang X; Zhang Q
    Nanoscale; 2015 Jun; 7(24):10790-800. PubMed ID: 26038337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further Enhancement in Intestinal Absorption of Paclitaxel by Using Transferrin-Modified Paclitaxel Nanocrystals.
    Han S; Li X; Zhou C; Hu X; Zhou Y; Jin Y; Liu Q; Wang L; Li X; Liu Y
    ACS Appl Bio Mater; 2020 Jul; 3(7):4684-4695. PubMed ID: 35025467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxypropyl Beta Cyclodextrin as a Potential Surface Modifier for Paclitaxel Nanocrystals.
    Haddad R; Alrabadi N; Altaani B; Masadeh M; Li T
    AAPS PharmSciTech; 2022 Aug; 23(6):219. PubMed ID: 35945468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing Oral Bioavailability by Paclitaxel Polymeric Micelles: Role of Transmembrane Pathways in the Oral Absorption.
    Liu Q; Cheng M; Liang J; Jin Y; Feng J; Tu L
    J Biomed Nanotechnol; 2020 Jul; 16(7):1160-1168. PubMed ID: 33308382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FRET imaging revealed that nanocrystals enhanced drug oral absorption by dissolution rather than endocytosis: A case study of coumarin 6.
    Zhang G; Wang Y; Zhang Z; He Z; Liu Y; Fu Q
    J Control Release; 2021 Apr; 332():225-232. PubMed ID: 33640408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of enhancement on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan micelles.
    Mo R; Jin X; Li N; Ju C; Sun M; Zhang C; Ping Q
    Biomaterials; 2011 Jul; 32(20):4609-20. PubMed ID: 21440934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and evaluation of targeting ligands surface modified paclitaxel nanocrystals.
    Sohn JS; Yoon DS; Sohn JY; Park JS; Choi JS
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():228-237. PubMed ID: 28024581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on orally delivered paclitaxel nanocrystals: modification, characterization and activity in the gastrointestinal tract.
    Liu R; Chang YN; Xing G; Li M; Zhao Y
    R Soc Open Sci; 2017 Nov; 4(11):170753. PubMed ID: 29291067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel thermo-sensitive hydrogel system with paclitaxel nanocrystals: High drug-loading, sustained drug release and extended local retention guaranteeing better efficacy and lower toxicity.
    Lin Z; Gao W; Hu H; Ma K; He B; Dai W; Wang X; Wang J; Zhang X; Zhang Q
    J Control Release; 2014 Jan; 174():161-70. PubMed ID: 24512789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of calmodulin antagonists on endocytosis and intracellular transport of ricin in polarized MDCK cells.
    Llorente A; Garred O; Holm PK; Eker P; Jacobsen J; van Deurs B; Sandvig K
    Exp Cell Res; 1996 Sep; 227(2):298-308. PubMed ID: 8831568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.