These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 28117132)
1. Investigating the fate and transport of fecal coliform contamination in a tidal estuarine system using a three-dimensional model. Chen WB; Liu WC Mar Pollut Bull; 2017 Mar; 116(1-2):365-384. PubMed ID: 28117132 [TBL] [Abstract][Full Text] [Related]
2. Modeling fecal coliform contamination in a tidal Danshuei River estuarine system. Liu WC; Chan WT; Young CC Sci Total Environ; 2015 Jan; 502():632-40. PubMed ID: 25302451 [TBL] [Abstract][Full Text] [Related]
3. Assessment of the climate change impacts on fecal coliform contamination in a tidal estuarine system. Liu WC; Chan WT Environ Monit Assess; 2015 Dec; 187(12):728. PubMed ID: 26545372 [TBL] [Abstract][Full Text] [Related]
4. Uncertainty assessment for three-dimensional hydrodynamic and fecal coliform modeling in the Danshuei River estuarine system: The influence of first-order parametric decay reaction. Young CC; Liu WC; Liu HM Mar Pollut Bull; 2023 Aug; 193():115220. PubMed ID: 37390625 [TBL] [Abstract][Full Text] [Related]
5. Transport and distribution of manganese in tidal estuarine system in Taiwan. Liu WC; Ken PJ; Liu HM Environ Sci Pollut Res Int; 2020 Jan; 27(1):510-531. PubMed ID: 31802339 [TBL] [Abstract][Full Text] [Related]
6. Modeling the transport and distribution of fecal coliform in a tidal estuary. Liu WC; Huang WC Sci Total Environ; 2012 Aug; 431():1-8. PubMed ID: 22652036 [TBL] [Abstract][Full Text] [Related]
7. Investigating the contaminant transport of heavy metals in estuarine waters. Liu WC; Liu HM; Ken PJ Environ Monit Assess; 2019 Dec; 192(1):31. PubMed ID: 31823064 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional modeling of fecal coliform in the Tidal Basin and Washington Channel, Washington, DC. Bai S; Lung WS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(7):1327-46. PubMed ID: 16854806 [TBL] [Abstract][Full Text] [Related]
9. Modeling the dry-weather tidal cycling of fecal indicator bacteria in surface waters of an intertidal wetland. Sanders BF; Arega F; Sutula M Water Res; 2005 Sep; 39(14):3394-408. PubMed ID: 16051310 [TBL] [Abstract][Full Text] [Related]
10. Modelling diagnosis of heavy metal (copper) transport in an estuary. Liu WC; Chang SW; Jiann KT; Wen LS; Liu KK Sci Total Environ; 2007 Dec; 388(1-3):234-49. PubMed ID: 17884139 [TBL] [Abstract][Full Text] [Related]
11. A changing estuary: Understanding historical patterns in salinity and fecal coliform levels in the May River, SC. Soueidan J; Warren A; Pearson M; Montie EW Mar Pollut Bull; 2021 Jul; 168():112384. PubMed ID: 33901906 [TBL] [Abstract][Full Text] [Related]
12. Modelling of hydrodynamics and cohesive sediment transport in Tanshui River estuarine system, Taiwan. Liu WC; Hsu MH; Kuo AY Mar Pollut Bull; 2002 Oct; 44(10):1076-88. PubMed ID: 12474969 [TBL] [Abstract][Full Text] [Related]
13. Sediment-water exchange of Vibrio sp. and fecal indicator bacteria: implications for persistence and transport in the Neuse River Estuary, North Carolina, USA. Fries JS; Characklis GW; Noble RT Water Res; 2008 Feb; 42(4-5):941-50. PubMed ID: 17945328 [TBL] [Abstract][Full Text] [Related]
14. Modelling importance of sediment effects on fate and transport of enterococci in the Severn Estuary, UK. Gao G; Falconer RA; Lin B Mar Pollut Bull; 2013 Feb; 67(1-2):45-54. PubMed ID: 23290609 [TBL] [Abstract][Full Text] [Related]
15. Integrated modelling of faecal contamination in a densely populated river-sea continuum (Scheldt River and Estuary). de Brauwere A; Gourgue O; de Brye B; Servais P; Ouattara NK; Deleersnijder E Sci Total Environ; 2014 Jan; 468-469():31-45. PubMed ID: 23999159 [TBL] [Abstract][Full Text] [Related]
16. Development of the fecal coliform total maximum daily load using Loading Simulation Program C++ and tidal prism model in estuarine shellfish growing areas: a case study in the Nassawadox coastal embayment, Virginia. Shen J; Sun S; Wang T J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(9):1791-807. PubMed ID: 16134369 [TBL] [Abstract][Full Text] [Related]
17. Inverse estimation of nonpoint sources of fecal coliform for establishing allowable load for Wye River, Maryland. Shen J; Jia JJ; Sisson GM Water Res; 2006 Oct; 40(18):3333-42. PubMed ID: 16978682 [TBL] [Abstract][Full Text] [Related]
18. Indicator organisms associated with stormwater suspended particles and estuarine sediment. Jeng HC; England AJ; Bradford HB J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(4):779-91. PubMed ID: 15792299 [TBL] [Abstract][Full Text] [Related]
19. Fecal coliform accumulation within a river subject to seasonally-disinfected wastewater discharges. Mitch AA; Gasner KC; Mitch WA Water Res; 2010 Sep; 44(16):4776-82. PubMed ID: 20580053 [TBL] [Abstract][Full Text] [Related]
20. Computer modeling of fecal coliform contamination of an urban estuarine system. Scarlatos PD Water Sci Technol; 2001; 44(7):9-16. PubMed ID: 11724500 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]