These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 28117132)
41. Importance of interactions between the water column and the sediment for microbial concentrations in streams. Rehmann CR; Soupir ML Water Res; 2009 Oct; 43(18):4579-89. PubMed ID: 19615712 [TBL] [Abstract][Full Text] [Related]
42. Modelling sediment-microbial dynamics in the South Nation River, Ontario, Canada: Towards the prediction of aquatic and human health risk. Droppo IG; Krishnappan BG; Liss SN; Marvin C; Biberhofer J Water Res; 2011 Jun; 45(12):3797-809. PubMed ID: 21558043 [TBL] [Abstract][Full Text] [Related]
43. Statistical models of fecal coliform levels in Pacific Northwest estuaries for improved shellfish harvest area closure decision making. Zimmer-Faust AG; Brown CA; Manderson A Mar Pollut Bull; 2018 Dec; 137():360-369. PubMed ID: 30503445 [TBL] [Abstract][Full Text] [Related]
44. Modelling the long-term fate of mercury in a lowland tidal river. I. Description of two finite segment models. Braga MC; Birkett JW; Lester JN; Shaw G Arch Environ Contam Toxicol; 2010 Feb; 58(2):373-82. PubMed ID: 19784806 [TBL] [Abstract][Full Text] [Related]
45. The seasonality of fecal coliform bacteria pollution and its influence on closures of shellfish harvesting areas in Mississippi Sound. Chigbu P; Gordon S; Tchounwou PB Int J Environ Res Public Health; 2005 Aug; 2(2):362-73. PubMed ID: 16705840 [TBL] [Abstract][Full Text] [Related]
46. Estuarine modification of nutrient and sediment exports to the Great Barrier Reef Marine Park from the Daintree and Annan River catchments. Davies PL; Eyre BD Mar Pollut Bull; 2005; 51(1-4):174-85. PubMed ID: 15757719 [TBL] [Abstract][Full Text] [Related]
47. Predicting fecal coliform using the interval-to-interval approach and SWAT in the Miyun watershed, China. Bai J; Shen Z; Yan T; Qiu J; Li Y Environ Sci Pollut Res Int; 2017 Jun; 24(18):15462-15470. PubMed ID: 28512705 [TBL] [Abstract][Full Text] [Related]
48. Modelling the transport of suspended particulate matter by the Rhone River plume (France). Implications for pollutant dispersion. Periáñez R Environ Pollut; 2005 Jan; 133(2):351-64. PubMed ID: 15519466 [TBL] [Abstract][Full Text] [Related]
49. Particle-water interactions of platinum-based anticancer drugs in river water and estuarine water. Turner A; Mascorda L Chemosphere; 2015 Jan; 119():415-422. PubMed ID: 25068619 [TBL] [Abstract][Full Text] [Related]
50. Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling. Servais P; Garcia-Armisen T; George I; Billen G Sci Total Environ; 2007 Apr; 375(1-3):152-67. PubMed ID: 17239424 [TBL] [Abstract][Full Text] [Related]
51. Sediment Trapping in Estuaries. Burchard H; Schuttelaars HM; Ralston DK Ann Rev Mar Sci; 2018 Jan; 10():371-395. PubMed ID: 28977760 [TBL] [Abstract][Full Text] [Related]
52. The influences of weir construction on salt water intrusion and water quality in a tidal estuary--assessment with modeling study. Chen WB; Liu WC; Huang LT Environ Monit Assess; 2013 Oct; 185(10):8169-84. PubMed ID: 23519845 [TBL] [Abstract][Full Text] [Related]
53. Quantification of fecal coliform inputs to aquatic systems through soil leaching. George I; Anzil A; Servais P Water Res; 2004 Feb; 38(3):611-8. PubMed ID: 14723930 [TBL] [Abstract][Full Text] [Related]
54. [DDTs transport between sediment and water in the mainstream of Haihe River in the urban area]. Chi J; Zhang X Huan Jing Ke Xue; 2009 Aug; 30(8):2376-80. PubMed ID: 19799304 [TBL] [Abstract][Full Text] [Related]
55. Modelling the fate of faecal indicators in a coastal basin. Kashefipour SM; Lin B; Falconer RA Water Res; 2006 Apr; 40(7):1413-25. PubMed ID: 16537086 [TBL] [Abstract][Full Text] [Related]
56. A study to estimate the fate and transport of bacteria in river water from birds nesting under a bridge. Nayamatullah MM; Bin-Shafique S; Sharif HO Water Sci Technol; 2013; 68(12):2568-75. PubMed ID: 24355842 [TBL] [Abstract][Full Text] [Related]
57. Modeling spatiotemporal bacterial variability with meteorological and watershed land-use characteristics. Cha Y; Park MH; Lee SH; Kim JH; Cho KH Water Res; 2016 Sep; 100():306-315. PubMed ID: 27208919 [TBL] [Abstract][Full Text] [Related]
58. Modeling water and sediment contamination of Lake Pontchartrain following pump-out of Hurricane Katrina floodwater. Dortch MS; Zakikhani M; Kim SC; Steevens JA J Environ Manage; 2008 May; 87(3):429-42. PubMed ID: 17399885 [TBL] [Abstract][Full Text] [Related]
59. Sediment transport and bed evolution model for complex river systems. Horvat M; Horvat Z Environ Monit Assess; 2020 Mar; 192(4):242. PubMed ID: 32193783 [TBL] [Abstract][Full Text] [Related]
60. The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA. Cho KH; Pachepsky YA; Kim JH; Kim JW; Park MH Water Res; 2012 Oct; 46(15):4750-60. PubMed ID: 22784807 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]