BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28117203)

  • 1. Benzoflavones as cholesterol esterase inhibitors: Synthesis, biological evaluation and docking studies.
    Singh H; Singh JV; Gupta MK; Singh P; Sharma S; Nepali K; Bedi PMS
    Bioorg Med Chem Lett; 2017 Feb; 27(4):850-854. PubMed ID: 28117203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 5,6-Benzoflavones as cholesterol esterase inhibitors: synthesis, biological evaluation and docking studies.
    Singh JV; Kaur A; Bhagat K; Gupta MK; Singh M; Singh H; Bedi PMS
    Medchemcomm; 2018 Mar; 9(3):490-502. PubMed ID: 30108939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-reactivity relationships for the inhibition mechanism at the second alkyl-chain-binding site of cholesterol esterase and lipase.
    Lin G; Shieh CT; Ho HC; Chouhwang JY; Lin WY; Lu CP
    Biochemistry; 1999 Aug; 38(31):9971-81. PubMed ID: 10433704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and biological evaluation of phosphorylated flavonoids as potent and selective inhibitors of cholesterol esterase.
    Wei Y; Peng AY; Wang B; Ma L; Peng G; Du Y; Tang J
    Eur J Med Chem; 2014 Mar; 74():751-8. PubMed ID: 23601990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and evaluation of 2-(1H-indol-3-yl)-4-phenylquinolines as inhibitors of cholesterol esterase.
    Muscia GC; Hautmann S; Buldain GY; Asís SE; Gütschow M
    Bioorg Med Chem Lett; 2014 Mar; 24(6):1545-9. PubMed ID: 24556381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and synthesis of selective cholesterol esterase inhibitor using dynamic combinatorial chemistry.
    Zhao S; Wu Y; Hu L
    Bioorg Chem; 2022 Feb; 119():105520. PubMed ID: 34864280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory Effect of Condensed Tannins from Banana Pulp on Cholesterol Esterase and Mechanisms of Interaction.
    Li X; Jiang H; Pu Y; Cao J; Jiang W
    J Agric Food Chem; 2019 Dec; 67(51):14066-14073. PubMed ID: 31762280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphaisocoumarins as a new class of potent inhibitors for pancreatic cholesterol esterase.
    Li B; Zhou B; Lu H; Ma L; Peng AY
    Eur J Med Chem; 2010 May; 45(5):1955-63. PubMed ID: 20149492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular recognition by cholesterol esterase of active site ligands: structure-reactivity effects for inhibition by aryl carbamates and subsequent carbamylenzyme turnover.
    Feaster SR; Lee K; Baker N; Hui DY; Quinn DM
    Biochemistry; 1996 Dec; 35(51):16723-34. PubMed ID: 8988009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New cholesterol esterase inhibitors based on rhodanine and thiazolidinedione scaffolds.
    Heng S; Tieu W; Hautmann S; Kuan K; Pedersen DS; Pietsch M; Gütschow M; Abell AD
    Bioorg Med Chem; 2011 Dec; 19(24):7453-63. PubMed ID: 22075233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and molecular docking study of novel cholesterol esterase inhibitory peptides from camel milk proteins.
    Mudgil P; Baby B; Ngoh YY; Vijayan R; Gan CY; Maqsood S
    J Dairy Sci; 2019 Dec; 102(12):10748-10759. PubMed ID: 31548068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of tricyclic 1,3-oxazin-4-ones and kinetic analysis of cholesterol esterase and acetylcholinesterase inhibition.
    Pietsch M; Gütschow M
    J Med Chem; 2005 Dec; 48(26):8270-88. PubMed ID: 16366609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of potential pancreatic cholesterol esterase inhibitors using pharmacophore modelling, virtual screening, and optimization studies.
    John S; Thangapandian S; Sakkiah S; Lee KW
    J Enzyme Inhib Med Chem; 2011 Aug; 26(4):535-45. PubMed ID: 21143043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new synthesis of fully phosphorylated flavones as potent pancreatic cholesterol esterase inhibitors.
    Peng G; Du Y; Wei Y; Tang J; Peng AY; Rao L
    Org Biomol Chem; 2011 Apr; 9(7):2530-4. PubMed ID: 21340062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and evaluation of a new series of tri-, di-, and mono-N-alkylcarbamylphloroglucinols as conformationally constrained inhibitors of cholesterol esterase.
    Lin MC; Lin GZ; Hwang CI; Jian SY; Lin J; Shen YF; Lin G
    Protein Sci; 2012 Sep; 21(9):1344-57. PubMed ID: 22811279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bridging of a substrate between cyclodextrin and an enzyme's active site pocket triggers a unique mode of inhibition.
    Sule NV; Ugrinov A; Mallik S; Srivastava DK
    Biochim Biophys Acta; 2015 Jan; 1850(1):141-9. PubMed ID: 25450177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, biological evaluation, and molecular docking studies of xanthone sulfonamides as ACAT inhibitors.
    Li X; Zou Y; Zhao Q; Yang Y; Wu M; Huang T; Hu H; Wu Q
    Chem Biol Drug Des; 2015 Mar; 85(3):394-403. PubMed ID: 25146964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carboxylated aurone derivatives as potent inhibitors of xanthine oxidase.
    Muzychka OV; Kobzar OL; Popova AV; Frasinyuk MS; Vovk AI
    Bioorg Med Chem; 2017 Jul; 25(14):3606-3613. PubMed ID: 28545814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential human cholesterol esterase inhibitor design: benefits from the molecular dynamics simulations and pharmacophore modeling studies.
    John S; Thangapandian S; Lee KW
    J Biomol Struct Dyn; 2012; 29(5):921-36. PubMed ID: 22292952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantiomeric inhibitors of cholesterol esterase and acetylcholinesterase.
    Lin G; Tsai YC; Liu HC; Liao WC; Chang CH
    Biochim Biophys Acta; 1998 Oct; 1388(1):161-74. PubMed ID: 9774723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.