BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 28117357)

  • 1. A novel Laccase Biosensor based on Laccase immobilized Graphene-Cellulose Microfiber Composite modified Screen-Printed Carbon Electrode for Sensitive Determination of Catechol.
    Palanisamy S; Ramaraj SK; Chen SM; Yang TC; Yi-Fan P; Chen TW; Velusamy V; Selvam S
    Sci Rep; 2017 Jan; 7():41214. PubMed ID: 28117357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic field-assisted surface engineering technology for active regulation of Fe
    Wang F; Zhang J; Xu L; Ma A; Zhuang G; Huo S; Zou B; Qian J; Cui Y; Zhang W
    Anal Chim Acta; 2024 Jul; 1311():342739. PubMed ID: 38816161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosensor based on multi-walled carbon nanotubes paste electrode modified with laccase for pirimicarb pesticide quantification.
    Oliveira TM; Fátima Barroso M; Morais S; de Lima-Neto P; Correia AN; Oliveira MB; Delerue-Matos C
    Talanta; 2013 Mar; 106():137-43. PubMed ID: 23598106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Characterization of Graphene and MWCNT Screen-Printed Electrodes Modified with AuNPs for Laccase Biosensor Development.
    Favero G; Fusco G; Mazzei F; Tasca F; Antiochia R
    Nanomaterials (Basel); 2015 Nov; 5(4):1995-2006. PubMed ID: 28347108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of an Amperometric Flow-Injection Microfluidic Biosensor Based on Laccase for In Situ Determination of Phenolic Compounds.
    Gonzalez-Rivera JC; Osma JF
    Biomed Res Int; 2015; 2015():845261. PubMed ID: 26509166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Graphene Oxide Concentration when Fabricating an Electrochemical Biosensor for DNA Detection.
    Chiticaru EA; Pilan L; Damian CM; Vasile E; Burns JS; Ioniţă M
    Biosensors (Basel); 2019 Sep; 9(4):. PubMed ID: 31561443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amperometric catechol biosensor based on laccase immobilized on nitrogen-doped ordered mesoporous carbon (N-OMC)/PVA matrix.
    Guo M; Wang H; Huang D; Han Z; Li Q; Wang X; Chen J
    Sci Technol Adv Mater; 2014 Jun; 15(3):035005. PubMed ID: 27877681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical flow-through biosensors based on microfiber enzymatic filter discs placed at printed electrodes.
    Josypcuk B; Tvorynska S
    Bioelectrochemistry; 2024 Jun; 157():108663. PubMed ID: 38359574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel ACE2-Based electrochemical biosensor for sensitive detection of SARS-CoV-2.
    Ghaedamini H; Khalaf K; Kim DS; Tang Y
    Anal Biochem; 2024 Jun; 689():115504. PubMed ID: 38458306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical Study and Characterization of an Amperometric Biosensor Based on the Immobilization of Laccase in a Nanostructure of TiO₂ Synthesized by the Sol-Gel Method.
    Romero-Arcos M; Garnica-Romo MG; Martínez-Flores HE
    Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A graphitized carbon@boron carbide-mediated laccase-based amperometric biosensor for epinephrine detection.
    Tang H; Cui M; Zhang M; Zhang Y
    Bioelectrochemistry; 2024 Feb; 155():108591. PubMed ID: 37883859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA Electrochemical Biosensor Based on Iron Oxide/Nanocellulose Crystalline Composite Modified Screen-Printed Carbon Electrode for Detection of
    Mat Zaid MH; Che-Engku-Chik CEN; Yusof NA; Abdullah J; Othman SS; Issa R; Md Noh MF; Wasoh H
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32722334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smartphone-enabled flow injection amperometric glucose monitoring based on a screen-printed carbon electrode modified with PEDOT@PB and a GOx@PPtNPs@MWCNTs nanocomposite.
    Khumngern S; Nontipichet N; Thavarungkul P; Kanatharana P; Numnuam A
    Talanta; 2024 May; 277():126336. PubMed ID: 38823326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of a microbial biosensor based on QD-MWNT supports by a one-step radiation reaction and detection of phenolic compounds in red wines.
    Kim SK; Kwen HD; Choi SH
    Sensors (Basel); 2011; 11(2):2001-12. PubMed ID: 22319395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile preparation of a Pt-ERGO composite modified screen-printed electrode for the sensitive determination of phenolic compounds.
    Lema L; Oliveira R; Amorim I; Bettencourt AP; Bento F
    Heliyon; 2023 Dec; 9(12):e22521. PubMed ID: 38076057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal Synthesis of Cr
    Ramaraj S; Mani S; Chen SM; Palanisamy S; Velusamy V; Hall JM; Chen TW; Tseng TW
    Sci Rep; 2018 Mar; 8(1):4839. PubMed ID: 29555957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zwitterionic hydrogel for preserving stability and activity of oxidase enzyme for electrochemical biosensor.
    Somchob B; Promphet N; Rodthongkum N; Hoven VP
    Talanta; 2024 Apr; 270():125510. PubMed ID: 38128281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombinant protein G/Au nanoparticles/graphene oxide modified electrodes used as an electrochemical biosensor for
    Chen H; Liu H; Cui C; Zhang W; Zuo Y
    J Food Sci Technol; 2022 Dec; 59(12):4653-4662. PubMed ID: 36276517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A catechol biosensor based on electrospun carbon nanofibers.
    Li D; Pang Z; Chen X; Luo L; Cai Y; Wei Q
    Beilstein J Nanotechnol; 2014; 5():346-54. PubMed ID: 24778958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring carbon particle type and plasma treatment to improve electrochemical properties of stencil-printed carbon electrodes.
    Kava AA; Henry CS
    Talanta; 2021 Jan; 221():121553. PubMed ID: 33076109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.