These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28117550)

  • 1. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands.
    Dalcin Martins P; Hoyt DW; Bansal S; Mills CT; Tfaily M; Tangen BA; Finocchiaro RG; Johnston MD; McAdams BC; Solensky MJ; Smith GJ; Chin YP; Wilkins MJ
    Glob Chang Biol; 2017 Aug; 23(8):3107-3120. PubMed ID: 28117550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viral and metabolic controls on high rates of microbial sulfur and carbon cycling in wetland ecosystems.
    Dalcin Martins P; Danczak RE; Roux S; Frank J; Borton MA; Wolfe RA; Burris MN; Wilkins MJ
    Microbiome; 2018 Aug; 6(1):138. PubMed ID: 30086797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wetland Sediments Host Diverse Microbial Taxa Capable of Cycling Alcohols.
    Dalcin Martins P; Frank J; Mitchell H; Markillie LM; Wilkins MJ
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple microbial guilds mediate soil methane cycling along a wetland salinity gradient.
    Hartman WH; Bueno de Mesquita CP; Theroux SM; Morgan-Lang C; Baldocchi DD; Tringe SG
    mSystems; 2024 Jan; 9(1):e0093623. PubMed ID: 38170982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment.
    Baldwin DS; Mitchell A
    Water Res; 2012 Mar; 46(4):965-74. PubMed ID: 22204939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfate concentrations affect sulfate reduction pathways and methane consumption in coastal wetlands.
    La W; Han X; Liu CQ; Ding H; Liu M; Sun F; Li S; Lang Y
    Water Res; 2022 Jun; 217():118441. PubMed ID: 35430469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review.
    Laanbroek HJ
    Ann Bot; 2010 Jan; 105(1):141-53. PubMed ID: 19689973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfate-reducing microorganisms in wetlands - fameless actors in carbon cycling and climate change.
    Pester M; Knorr KH; Friedrich MW; Wagner M; Loy A
    Front Microbiol; 2012; 3():72. PubMed ID: 22403575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic Methane Oxidation Driven by Microbial Reduction of Natural Organic Matter in a Tropical Wetland.
    Valenzuela EI; Prieto-Davó A; López-Lozano NE; Hernández-Eligio A; Vega-Alvarado L; Juárez K; García-González AS; López MG; Cervantes FJ
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28341676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ebullitive methane emissions from oxygenated wetland streams.
    Crawford JT; Stanley EH; Spawn SA; Finlay JC; Loken LC; Striegl RG
    Glob Chang Biol; 2014 Nov; 20(11):3408-22. PubMed ID: 24756991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrobiogechemical interactions in the hyporheic zone of a sulfate-impacted, freshwater stream and riparian wetland ecosystem.
    Torgeson JM; Rosenfeld CE; Dunshee AJ; Duhn K; Schmitter R; O'Hara PA; Ng GHC; Santelli CM
    Environ Sci Process Impacts; 2022 Sep; 24(9):1360-1382. PubMed ID: 35661843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global nitrogen input on wetland ecosystem: The driving mechanism of soil labile carbon and nitrogen on greenhouse gas emissions.
    Chen M; Chang L; Zhang J; Guo F; Vymazal J; He Q; Chen Y
    Environ Sci Ecotechnol; 2020 Oct; 4():100063. PubMed ID: 36157707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of chlorpyrifos and chlorpyrifos-methyl in prairie pothole pore waters.
    Adams RM; McAdams BC; Arnold WA; Chin YP
    Environ Sci Process Impacts; 2016 Nov; 18(11):1406-1416. PubMed ID: 27711832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Landscape geomorphic characteristic impacts on greenhouse gas fluxes in exposed stream and riparian sediments.
    Vidon P; Serchan S
    Environ Sci Process Impacts; 2016 Jul; 18(7):844-53. PubMed ID: 27306099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wetland Soil Carbon in a Watershed Context for the Prairie Pothole Region.
    Phillips RL; Ficken C; Eken M; Hendrickson J; Beeri O
    J Environ Qual; 2016 Jan; 45(1):368-75. PubMed ID: 26828193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid removal of nitrate and sulfate in freshwater wetland sediments.
    Whitmire SL; Hamilton SK
    J Environ Qual; 2005; 34(6):2062-71. PubMed ID: 16221826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in southeast China.
    Hu Z; Wu S; Ji C; Zou J; Zhou Q; Liu S
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1505-15. PubMed ID: 26374545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitigation of methane emissions from constructed farm wetlands.
    Pangala SR; Reay DS; Heal KV
    Chemosphere; 2010 Jan; 78(5):493-9. PubMed ID: 20034652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of dissolved organic carbon on the spatial variability of methanogenic archaea communities in natural wetland ecosystems across China.
    Liu D; Ding W; Jia Z; Cai Z
    Appl Microbiol Biotechnol; 2012 Oct; 96(1):253-63. PubMed ID: 22218772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of seasonality, transport pathway, and spatial structure on greenhouse gas fluxes in a restored wetland.
    McNicol G; Sturtevant CS; Knox SH; Dronova I; Baldocchi DD; Silver WL
    Glob Chang Biol; 2017 Jul; 23(7):2768-2782. PubMed ID: 27888548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.