These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 28117579)

  • 1. Delaying Frost Formation by Controlling Surface Chemistry of Carbon Nanotube-Coated Steel Surfaces.
    Zhang Y; Klittich MR; Gao M; Dhinojwala A
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6512-6519. PubMed ID: 28117579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication.
    Pan R; Zhang H; Zhong M
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces.
    Heydari G; Sedighi Moghaddam M; Tuominen M; Fielden M; Haapanen J; Mäkelä JM; Claesson PM
    J Colloid Interface Sci; 2016 Apr; 468():21-33. PubMed ID: 26821148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superhydrophobic stability of nanotube array surfaces under impact and static forces.
    Zhu L; Shi P; Xue J; Wang Y; Chen Q; Ding J; Wang Q
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8073-9. PubMed ID: 24873475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Verification of icephobic/anti-icing properties of a superhydrophobic surface.
    Wang Y; Xue J; Wang Q; Chen Q; Ding J
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling states of water droplets on nanostructured surfaces by design.
    Zhu C; Gao Y; Huang Y; Li H; Meng S; Francisco JS; Zeng XC
    Nanoscale; 2017 Nov; 9(46):18240-18245. PubMed ID: 29104978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhydrophobicity of natural and artificial surfaces under controlled condensation conditions.
    Yin L; Zhu L; Wang Q; Ding J; Chen Q
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1254-60. PubMed ID: 21443252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-Icing or Deicing: Icephobicities of Superhydrophobic Surfaces with Hierarchical Structures.
    Sarshar MA; Song D; Swarctz C; Lee J; Choi CH
    Langmuir; 2018 Nov; 34(46):13821-13827. PubMed ID: 30360623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.
    Kim P; Wong TS; Alvarenga J; Kreder MJ; Adorno-Martinez WE; Aizenberg J
    ACS Nano; 2012 Aug; 6(8):6569-77. PubMed ID: 22680067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.
    Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic defrosting on nanostructured superhydrophobic surfaces.
    Boreyko JB; Srijanto BR; Nguyen TD; Vega C; Fuentes-Cabrera M; Collier CP
    Langmuir; 2013 Jul; 29(30):9516-24. PubMed ID: 23822157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical modeling and thermodynamic analysis of robust superhydrophobic surfaces with inverse-trapezoidal microstructures.
    Im M; Im H; Lee JH; Yoon JB; Choi YK
    Langmuir; 2010 Nov; 26(22):17389-97. PubMed ID: 20879754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-icing Function.
    Wang H; He M; Liu H; Guan Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25586-25594. PubMed ID: 31267735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Defrosting on Scalable Superhydrophobic Surfaces.
    Murphy KR; McClintic WT; Lester KC; Collier CP; Boreyko JB
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24308-24317. PubMed ID: 28653826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cassie-State Stability of Metallic Superhydrophobic Surfaces with Various Micro/Nanostructures Produced by a Femtosecond Laser.
    Long J; Pan L; Fan P; Gong D; Jiang D; Zhang H; Li L; Zhong M
    Langmuir; 2016 Feb; 32(4):1065-72. PubMed ID: 26745154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of superhydrophobic surfaces with Wenzel and Cassie-Baxter state: experimental evidence and theoretical insight.
    Zhang X; Ding B; Bian Y; Jiang D; Parkin IP
    Nanotechnology; 2018 Nov; 29(48):485601. PubMed ID: 30215618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.
    Su X; Li H; Lai X; Zhang L; Liao X; Wang J; Chen Z; He J; Zeng X
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4213-4221. PubMed ID: 29323869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Condensation and freezing of droplets on superhydrophobic surfaces.
    Oberli L; Caruso D; Hall C; Fabretto M; Murphy PJ; Evans D
    Adv Colloid Interface Sci; 2014 Aug; 210():47-57. PubMed ID: 24200089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.