BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28117773)

  • 1. Xenopus Oocytes: Optimized Methods for Microinjection, Removal of Follicular Cell Layers, and Fast Solution Changes in Electrophysiological Experiments.
    Maldifassi MC; Wongsamitkul N; Baur R; Sigel E
    J Vis Exp; 2016 Dec; (118):. PubMed ID: 28117773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cave Canalem: how endogenous ion channels may interfere with heterologous expression in Xenopus oocytes.
    Terhag J; Cavara NA; Hollmann M
    Methods; 2010 May; 51(1):66-74. PubMed ID: 20123125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exogenous protein expression in Xenopus oocytes: basic procedures.
    Bossi E; Fabbrini MS; Ceriotti A
    Methods Mol Biol; 2007; 375():107-31. PubMed ID: 17634599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xenopus oocytes as a heterologous expression system for studying ion channels with the patch-clamp technique.
    Tammaro P; Shimomura K; Proks P
    Methods Mol Biol; 2008; 491():127-39. PubMed ID: 18998089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patch-Clamp and Perfusion Techniques to Study Ion Channels Expressed in
    Zhang G; Cui J
    Cold Spring Harb Protoc; 2018 Apr; 2018(4):pdb.prot099051. PubMed ID: 29382809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous transport systems in the Xenopus laevis oocyte plasma membrane.
    Sobczak K; Bangel-Ruland N; Leier G; Weber WM
    Methods; 2010 May; 51(1):183-9. PubMed ID: 19963061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the longevity of surgically extracted Xenopus laevis oocytes for the study of nematode ligand-gated ion channels.
    Abdelmassih SA; Cochrane E; Forrester SG
    Invert Neurosci; 2017 Nov; 18(1):1. PubMed ID: 29185074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological recording from Xenopus oocytes.
    Stühmer W
    Methods Enzymol; 1992; 207():319-39. PubMed ID: 1382188
    [No Abstract]   [Full Text] [Related]  

  • 9. A novel Xenopus oocyte expression system based on cytoplasmic coinjection of T7-driven plasmids and purified T7-RNA polymerase.
    Geib S; Sandoz G; Carlier E; Cornet V; Cheynet-Sauvion V; De Waard M
    Recept Channels; 2001; 7(5):331-43. PubMed ID: 11697077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of microtransplantation of rat brain neurolemma into Xenopus laevis oocytes as a technique to study the effect of neurotoxicants on endogenous voltage-sensitive ion channels.
    Murenzi E; Toltin AC; Symington SB; Morgan MM; Clark JM
    Neurotoxicology; 2017 May; 60():260-273. PubMed ID: 27063102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xenopus oocyte electrophysiology in GPCR drug discovery.
    Hansen KB; Bräuner-Osborne H
    Methods Mol Biol; 2009; 552():343-57. PubMed ID: 19513662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An automated system for intracellular and intranuclear injection.
    Hogg RC; Bandelier F; Benoit A; Dosch R; Bertrand D
    J Neurosci Methods; 2008 Mar; 169(1):65-75. PubMed ID: 18243328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of stage II-III Xenopus oocytes to study voltage-dependent ion channels.
    Krafte DS; Lester HA
    Methods Enzymol; 1992; 207():339-45. PubMed ID: 1382189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xenopus borealis as an alternative source of oocytes for biophysical and pharmacological studies of neuronal ion channels.
    Cristofori-Armstrong B; Soh MS; Talwar S; Brown DL; Griffin JD; Dekan Z; Stow JL; King GF; Lynch JW; Rash LD
    Sci Rep; 2015 Oct; 5():14763. PubMed ID: 26440210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtransplantation of ligand-gated receptor-channels from fresh or frozen nervous tissue into Xenopus oocytes: a potent tool for expanding functional information.
    Eusebi F; Palma E; Amici M; Miledi R
    Prog Neurobiol; 2009 May; 88(1):32-40. PubMed ID: 19428960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved technique for studying ion channels expressed in Xenopus oocytes, including fast superfusion.
    Costa AC; Patrick JW; Dani JA
    Biophys J; 1994 Jul; 67(1):395-401. PubMed ID: 7522597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution of synaptic Ion channels from rodent and human brain in Xenopus oocytes: a biochemical and electrophysiological characterization.
    Mazzo F; Zwart R; Serratto GM; Gardinier KM; Porter W; Reel J; Maraula G; Sher E
    J Neurochem; 2016 Aug; 138(3):384-96. PubMed ID: 27216696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes.
    Musa-Aziz R; Boron WF; Parker MD
    Methods; 2010 May; 51(1):134-45. PubMed ID: 20051266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement and testing of a concentration-clamp system for oocytes of Xenopus laevis.
    Madeja M; Musshoff U; Speckmann EJ
    J Neurosci Methods; 1995 Dec; 63(1-2):211-3. PubMed ID: 8788066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-function vector for protein expression in both mammalian cells and Xenopus laevis oocytes.
    Jespersen T; Grunnet M; Angelo K; Klaerke DA; Olesen SP
    Biotechniques; 2002 Mar; 32(3):536-8, 540. PubMed ID: 11911656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.