These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 28117805)

  • 1. Image-guided, Laser-based Fabrication of Vascular-derived Microfluidic Networks.
    Heintz KA; Mayerich D; Slater JH
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28117805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of 3D Biomimetic Microfluidic Networks in Hydrogels.
    Heintz KA; Bregenzer ME; Mantle JL; Lee KH; West JL; Slater JH
    Adv Healthc Mater; 2016 Sep; 5(17):2153-60. PubMed ID: 27239785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilayer microfluidic PEGDA hydrogels.
    Cuchiara MP; Allen AC; Chen TM; Miller JS; West JL
    Biomaterials; 2010 Jul; 31(21):5491-7. PubMed ID: 20447685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic hydrogels for tissue engineering.
    Huang GY; Zhou LH; Zhang QC; Chen YM; Sun W; Xu F; Lu TJ
    Biofabrication; 2011 Mar; 3(1):012001. PubMed ID: 21372342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes.
    Xie R; Liang Z; Ai Y; Zheng W; Xiong J; Xu P; Liu Y; Ding M; Gao J; Wang J; Liang Q
    Nat Protoc; 2021 Feb; 16(2):937-964. PubMed ID: 33318693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of multifaceted, micropatterned surfaces and image-guided patterning using laser scanning lithography.
    Slater JH; West JL
    Methods Cell Biol; 2014; 119():193-217. PubMed ID: 24439286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-step Variable Height Photolithography for Valved Multilayer Microfluidic Devices.
    Brower K; White AK; Fordyce PM
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28190039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic-assisted fabrication of flexible and location traceable organo-motor.
    Seo KD; Kwak BK; Sanchez S; Kim DS
    IEEE Trans Nanobioscience; 2015 Apr; 14(3):298-304. PubMed ID: 25751871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device.
    Krutkramelis K; Xia B; Oakey J
    Lab Chip; 2016 Apr; 16(8):1457-65. PubMed ID: 26987384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element.
    Golden AP; Tien J
    Lab Chip; 2007 Jun; 7(6):720-5. PubMed ID: 17538713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon fabrication of hydrogel microstructures for excitation and immobilization of cells.
    Hasselmann NF; Hackmann MJ; Horn W
    Biomed Microdevices; 2017 Dec; 20(1):8. PubMed ID: 29288278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO
    Yao Y; Fan Y
    Biomed Microdevices; 2021 Sep; 23(4):47. PubMed ID: 34550472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-functionalized silk hydrogel microfluidic systems.
    Zhao S; Chen Y; Partlow BP; Golding AS; Tseng P; Coburn J; Applegate MB; Moreau JE; Omenetto FG; Kaplan DL
    Biomaterials; 2016 Jul; 93():60-70. PubMed ID: 27077566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.
    Chung BG; Lee KH; Khademhosseini A; Lee SH
    Lab Chip; 2012 Jan; 12(1):45-59. PubMed ID: 22105780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vessel-on-a-chip with Hydrogel-based Microfluidics.
    Nie J; Gao Q; Wang Y; Zeng J; Zhao H; Sun Y; Shen J; Ramezani H; Fu Z; Liu Z; Xiang M; Fu J; Zhao P; Chen W; He Y
    Small; 2018 Nov; 14(45):e1802368. PubMed ID: 30307698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of a Monolithic Lab-on-a-Chip Platform with Integrated Hydrogel Waveguides for Chemical Sensing.
    Torres-Mapa ML; Singh M; Simon O; Mapa JL; Machida M; Günther A; Roth B; Heinemann D; Terakawa M; Heisterkamp A
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Fabrication of Biomimetic Helical Hydrogel Microfibers for Blood-Vessel-on-a-Chip Applications.
    Jia L; Han F; Yang H; Turnbull G; Wang J; Clarke J; Shu W; Guo M; Li B
    Adv Healthc Mater; 2019 Jul; 8(13):e1900435. PubMed ID: 31081247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel.
    He J; Chen R; Lu Y; Zhan L; Liu Y; Li D; Jin Z
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():53-60. PubMed ID: 26652348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multilayer microfluidic poly(ethylene glycol) diacrylate hydrogels.
    Cuchiara MP; West JL
    Methods Mol Biol; 2013; 949():387-401. PubMed ID: 23329455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying 3D chemotaxis in microfluidic-based chips with step gradients of collagen hydrogel concentrations.
    Del Amo C; Borau C; Movilla N; Asín J; García-Aznar JM
    Integr Biol (Camb); 2017 Apr; 9(4):339-349. PubMed ID: 28300261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.