BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 28117979)

  • 1. Unusually High and Anisotropic Thermal Conductivity in Amorphous Silicon Nanostructures.
    Kwon S; Zheng J; Wingert MC; Cui S; Chen R
    ACS Nano; 2017 Mar; 11(3):2470-2476. PubMed ID: 28117979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sub-amorphous thermal conductivity in ultrathin crystalline silicon nanotubes.
    Wingert MC; Kwon S; Hu M; Poulikakos D; Xiang J; Chen R
    Nano Lett; 2015 Apr; 15(4):2605-11. PubMed ID: 25758163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of suppressed diffuson and propagon thermal conductivity of hydrogenated amorphous silicon films.
    Zhang Y; Eslamisaray MA; Feng T; Kortshagen U; Wang X
    Nanoscale Adv; 2021 Dec; 4(1):87-94. PubMed ID: 36132943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Record Low Thermal Conductivity of Polycrystalline Si Nanowire: Breaking the Casimir Limit by Severe Suppression of Propagons.
    Zhou Y; Hu M
    Nano Lett; 2016 Oct; 16(10):6178-6187. PubMed ID: 27603153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultimate suppression of thermal transport in amorphous silicon nitride by phononic nanostructure.
    Tambo N; Liao Y; Zhou C; Ashley EM; Takahashi K; Nealey PF; Naito Y; Shiomi J
    Sci Adv; 2020 Sep; 6(39):. PubMed ID: 32978150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic temperature-dependent thermal conductivity by an Al
    Lee WY; Lee JH; Ahn JY; Park TH; Park NW; Kim GS; Park JS; Lee SK
    Nanotechnology; 2017 Mar; 28(10):105401. PubMed ID: 28145279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling High Thermal Conductivity with In-Plane Anisotropy Observed in Suspended SiP
    Dai X; Qiu C; Bi X; Sui C; Chen P; Qin F; Yuan H
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):13980-13988. PubMed ID: 38446715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-plane thermal conductivity of sub-20 nm thick suspended mono-crystalline Si layers.
    Ferrando-Villalba P; Lopeandia AF; Abad L; Llobet J; Molina-Ruiz M; Garcia G; Gerbolès M; Alvarez FX; Goñi AR; Muñoz-Pascual FJ; Rodríguez-Viejo J
    Nanotechnology; 2014 May; 25(18):185402. PubMed ID: 24737220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity.
    Nakamura Y
    Sci Technol Adv Mater; 2018; 19(1):31-43. PubMed ID: 29371907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thickness-dependent in-plane thermal conductivity of suspended MoS
    Bae JJ; Jeong HY; Han GH; Kim J; Kim H; Kim MS; Moon BH; Lim SC; Lee YH
    Nanoscale; 2017 Feb; 9(7):2541-2547. PubMed ID: 28150838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus.
    Luo Z; Maassen J; Deng Y; Du Y; Garrelts RP; Lundstrom MS; Ye PD; Xu X
    Nat Commun; 2015 Oct; 6():8572. PubMed ID: 26472191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Morphology and Crystal Structure on the Thermal Conductivity of Titania Nanotubes.
    Ali S; Orell O; Kanerva M; Hannula SP
    Nanoscale Res Lett; 2018 Jul; 13(1):212. PubMed ID: 30014264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance.
    Regner KT; Sellan DP; Su Z; Amon CH; McGaughey AJ; Malen JA
    Nat Commun; 2013; 4():1640. PubMed ID: 23535661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ballistic Phonon Penetration Depth in Amorphous Silicon Dioxide.
    Yang L; Zhang Q; Cui Z; Gerboth M; Zhao Y; Xu TT; Walker DG; Li D
    Nano Lett; 2017 Dec; 17(12):7218-7225. PubMed ID: 29087722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of thermal conductivity of amorphous silicon thin films from the optical reflectivity measurement.
    Moon SJ; Choi JH
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6362-6. PubMed ID: 24205662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultimate Confinement of Phonon Propagation in Silicon Nanocrystalline Structure.
    Oyake T; Feng L; Shiga T; Isogawa M; Nakamura Y; Shiomi J
    Phys Rev Lett; 2018 Jan; 120(4):045901. PubMed ID: 29437417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Reduction of Thermal Conductivity in Amorphous Silicon Nitride-Containing Phononic Crystals Fabricated Using Directed Self-Assembly of Block Copolymers.
    Zhou C; Tambo N; Ashley EM; Liao Y; Shiomi J; Takahashi K; Craig GSW; Nealey PF
    ACS Nano; 2020 Jun; 14(6):6980-6989. PubMed ID: 32459464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of pore anisotropy on the thermal conductivity of porous Si nanowires.
    Ferrando-Villalba P; D'Ortenzi L; Dalkiranis GG; Cara E; Lopeandia AF; Abad L; Rurali R; Cartoixà X; De Leo N; Saghi Z; Jacob M; Gambacorti N; Boarino L; Rodríguez-Viejo J
    Sci Rep; 2018 Aug; 8(1):12796. PubMed ID: 30143650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale heat transport through the hetero-interface of SrRuO
    Jeong DG; Ju HI; Choi YG; Roh CJ; Woo S; Choi WS; Lee JS
    Nanotechnology; 2019 Sep; 30(37):374001. PubMed ID: 31181544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From amorphous to nanocrystalline: the effect of nanograins in an amorphous matrix on the thermal conductivity of hot-wire chemical-vapor deposited silicon films.
    Kearney BT; Jugdersuren B; Queen DR; Metcalf TH; Culbertson JC; Desario PA; Stroud RM; Nemeth W; Wang Q; Liu X
    J Phys Condens Matter; 2018 Feb; 30(8):085301. PubMed ID: 29283107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.