BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28118009)

  • 21. Mixed-Ligand Metal-Organic Frameworks and Heteroleptic Coordination Cages as Multifunctional Scaffolds-A Comparison.
    Pullen S; Clever GH
    Acc Chem Res; 2018 Dec; 51(12):3052-3064. PubMed ID: 30379523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transmission Electron Microscopy Reveals Deposition of Metal Oxide Coatings onto Metal-Organic Frameworks.
    Denny MS; Parent LR; Patterson JP; Meena SK; Pham H; Abellan P; Ramasse QM; Paesani F; Gianneschi NC; Cohen SM
    J Am Chem Soc; 2018 Jan; 140(4):1348-1357. PubMed ID: 29268603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Postsynthetic modification of metal-organic frameworks.
    Wang Z; Cohen SM
    Chem Soc Rev; 2009 May; 38(5):1315-29. PubMed ID: 19384440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coupling Postsynthetic High-Temperature Oxidative Thermolysis and Thermal Rearrangements in Isoreticular Zinc MOFs.
    Ablott TA; Webby R; Jenkinson DR; Nikolich A; Liu L; Amer Hamzah H; Mahon MF; Burrows AD; Richardson C
    Inorg Chem; 2022 Jan; 61(2):1136-1144. PubMed ID: 34978814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single crystal-to-single crystal site-selective postsynthetic metal exchange in a Zn-MOF based on semi-rigid tricarboxylic acid and access to bimetallic MOFs.
    Bajpai A; Chandrasekhar P; Govardhan S; Banerjee R; Moorthy JN
    Chemistry; 2015 Feb; 21(7):2759-65. PubMed ID: 25533890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Establishing Porosity Gradients within Metal-Organic Frameworks Using Partial Postsynthetic Ligand Exchange.
    Liu C; Zeng C; Luo TY; Merg AD; Jin R; Rosi NL
    J Am Chem Soc; 2016 Sep; 138(37):12045-8. PubMed ID: 27593173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemistry of Covalent Organic Frameworks.
    Waller PJ; Gándara F; Yaghi OM
    Acc Chem Res; 2015 Dec; 48(12):3053-63. PubMed ID: 26580002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.
    Horike S; Umeyama D; Kitagawa S
    Acc Chem Res; 2013 Nov; 46(11):2376-84. PubMed ID: 23730917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.
    Martí-Rujas J; Kawano M
    Acc Chem Res; 2013 Feb; 46(2):493-505. PubMed ID: 23252592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Postsynthetic Addition of Ligand Struts in Metal-Organic Frameworks: Effect of Syn/Anti Addition on Framework Structures with Distinct Topologies.
    Xu X; Yang F; Han H; Xu Y; Wei W
    Inorg Chem; 2018 Mar; 57(5):2369-2372. PubMed ID: 29465235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement.
    Deria P; Mondloch JE; Karagiaridi O; Bury W; Hupp JT; Farha OK
    Chem Soc Rev; 2014 Aug; 43(16):5896-912. PubMed ID: 24723093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of Isostructural Porphyrin-Salen Chiral Metal-Organic Frameworks through Postsynthetic Metalation Based on Single-Crystal to Single-Crystal Transformation.
    Li J; Fan Y; Ren Y; Liao J; Qi C; Jiang H
    Inorg Chem; 2018 Feb; 57(3):1203-1212. PubMed ID: 29309133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microscopic and Mesoscopic Dual Postsynthetic Modifications of Metal-Organic Frameworks.
    Lee B; Moon D; Park J
    Angew Chem Int Ed Engl; 2020 Aug; 59(33):13793-13799. PubMed ID: 32338411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequential Transformation of Zirconium(IV)-MOFs into Heterobimetallic MOFs Bearing Magnetic Anisotropic Cobalt(II) Centers.
    Yuan S; Qin JS; Su J; Li B; Li J; Chen W; Drake HF; Zhang P; Yuan D; Zuo J; Zhou HC
    Angew Chem Int Ed Engl; 2018 Sep; 57(38):12578-12583. PubMed ID: 30102004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversible Postsynthetic Modification in a Metal-Organic Framework.
    Mondal P; Neuschuler Z; Mandal D; Hernandez RE; Cohen SM
    Angew Chem Int Ed Engl; 2024 Feb; 63(9):e202317062. PubMed ID: 38150287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Significantly Enhancing the Lithium Ionic Conductivity of Metal-Organic Frameworks via a Postsynthetic Modification Strategy.
    Tian L; Xu X; Liu M; Liu Z; Liu Z
    Langmuir; 2021 Apr; 37(13):3922-3928. PubMed ID: 33760624
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeted Drug Delivery in Covalent Organic Nanosheets (CONs) via Sequential Postsynthetic Modification.
    Mitra S; Sasmal HS; Kundu T; Kandambeth S; Illath K; Díaz Díaz D; Banerjee R
    J Am Chem Soc; 2017 Mar; 139(12):4513-4520. PubMed ID: 28256830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aldehyde-Tagged Zirconium Metal-Organic Frameworks: a Versatile Platform for Postsynthetic Modification.
    Xi FG; Liu H; Yang NN; Gao EQ
    Inorg Chem; 2016 May; 55(10):4701-3. PubMed ID: 27136395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Defect Engineering into Metal-Organic Frameworks for the Rapid and Sequential Installation of Functionalities.
    Park H; Kim S; Jung B; Park MH; Kim Y; Kim M
    Inorg Chem; 2018 Feb; 57(3):1040-1047. PubMed ID: 29303561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification.
    Nguyen JG; Cohen SM
    J Am Chem Soc; 2010 Apr; 132(13):4560-1. PubMed ID: 20232871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.