BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28118136)

  • 1. Influence of Sample Temperature for Measurement Accuracy with FT-NIR Spectroscopy.
    Dvořák L; Fajman M; Sustova K
    J AOAC Int; 2017 Mar; 100(2):499-502. PubMed ID: 28118136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somatic cell count determination in cow's milk by near-infrared spectroscopy: a new diagnostic tool.
    Tsenkova R; Atanassova S; Kawano S; Toyoda K
    J Anim Sci; 2001 Oct; 79(10):2550-7. PubMed ID: 11721833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible and near-infrared spectroscopic analysis of raw milk for cow health monitoring: reflectance or transmittance?
    Aernouts B; Polshin E; Lammertyn J; Saeys W
    J Dairy Sci; 2011 Nov; 94(11):5315-29. PubMed ID: 22032354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near infrared spectroscopy for biomonitoring: cow milk composition measurement in a spectral region from 1,100 to 2,400 nanometers.
    Tsenkova R; Atanassova S; Itoh K; Ozaki Y; Toyoda K
    J Anim Sci; 2000 Mar; 78(3):515-22. PubMed ID: 10764056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of FT-NIR Spectroscopy and ELISA for Detection of Adulteration of Goat Cheeses with Cow's Milk.
    Dvorak L; Mlcek J; Sustova K
    J AOAC Int; 2016; 99(1):180-6. PubMed ID: 26822518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared spectroscopy for dairy management: measurement of unhomogenized milk composition.
    Tsenkova R; Atanassova S; Toyoda K; Ozaki Y; Itoh K; Fearn T
    J Dairy Sci; 1999 Nov; 82(11):2344-51. PubMed ID: 10575600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of in-line milk composition analysis with diffuse reflectance near-infrared spectroscopy.
    Melfsen A; Hartung E; Haeussermann A
    J Dairy Sci; 2012 Nov; 95(11):6465-76. PubMed ID: 22959947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of fat, protein, and total solids in ovine milk by near-infrared spectroscopy.
    Albanell E; Cáceres P; Caja G; Molina E; Gargouri A
    J AOAC Int; 1999; 82(3):753-8. PubMed ID: 10367392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-infrared analysis of fat, protein, and casein in cow's milk.
    Laporte MF; Paquin P
    J Agric Food Chem; 1999 Jul; 47(7):2600-5. PubMed ID: 10552532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reference-free spectroscopic determination of fat and protein in milk in the visible and near infrared region below 1000nm using spatially resolved diffuse reflectance fiber probe.
    Bogomolov A; Belikova V; Galyanin V; Melenteva A; Meyer H
    Talanta; 2017 May; 167():563-572. PubMed ID: 28340762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of the FT-NIR Method in Evaluating the Fat Content of Milk Using Calibration Models Developed for the Reference Methods According to Röse-Gottlieb and Gerber.
    Mlcek J; Dvorak L; Sustova K; Szwedziak K
    J AOAC Int; 2016 Sep; 99(5):1305-9. PubMed ID: 27324807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study on noninvasive detection using NIR diffuse reflectance spectrum for monitoring protein content in milk powder].
    Chang M; Chu PJ; Xu KX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jan; 27(1):43-5. PubMed ID: 17390645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robustness of near-infrared calibration models for the prediction of milk constituents during the milking process.
    Melfsen A; Hartung E; Haeussermann A
    J Dairy Res; 2013 Feb; 80(1):103-12. PubMed ID: 23182024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [On-site evaluation of raw milk qualities by portable Vis/NIR transmittance technique].
    Wang JH; Zhang XW; Wang J; Han DH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2679-84. PubMed ID: 25739207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of fat, protein, and lactose in raw milk by Fourier transform infrared spectroscopy and by analysis with a conventional filter-based milk analyzer.
    Lefier D; Grappin R; Pochet S
    J AOAC Int; 1996; 79(3):711-7. PubMed ID: 8634540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of near and mid infra-red spectroscopy for analysis of protein, fat, lactose and total solids in raw cow and camel milk.
    Mohamed H; Nagy P; Agbaba J; Kamal-Eldin A
    Food Chem; 2021 Jan; 334():127436. PubMed ID: 32711262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of whey quality with NIR spectroscopy--a feasibility study.
    Kucheryavskiy S; Lomborg CJ
    Food Chem; 2015 Jun; 176():271-7. PubMed ID: 25624233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydration dominates dielectric spectroscopy-based high accuracy quantification of lactose content in cow's milk.
    Fang D; Yang K; Zhu J; An C; Guo W; Zhu X
    J Sci Food Agric; 2023 Sep; 103(12):5873-5882. PubMed ID: 37093630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the prediction ability of FT-MIR spectroscopy to assess titratable acidity in cow's milk.
    Calamari L; Gobbi L; Bani P
    Food Chem; 2016 Feb; 192():477-84. PubMed ID: 26304375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of fat, protein, casein, total solids, and somatic cell count in goat's milk by near-infrared reflectance spectroscopy.
    Albanell E; Caja G; Such X; Rovai M; Salama AA; Casals R
    J AOAC Int; 2003; 86(4):746-52. PubMed ID: 14509434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.