BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28118504)

  • 1. Systems analysis in Cellvibrio japonicus resolves predicted redundancy of β-glucosidases and determines essential physiological functions.
    Nelson CE; Rogowski A; Morland C; Wilhide JA; Gilbert HJ; Gardner JG
    Mol Microbiol; 2017 Apr; 104(2):294-305. PubMed ID: 28118504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive functional characterization of the glycoside hydrolase family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification.
    Nelson CE; Attia MA; Rogowski A; Morland C; Brumer H; Gardner JG
    Environ Microbiol; 2017 Dec; 19(12):5025-5039. PubMed ID: 29052930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trehalose Degradation by Cellvibrio japonicus Exhibits No Functional Redundancy and Is Solely Dependent on the Tre37A Enzyme.
    Garcia CA; Narrett JA; Gardner JG
    Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32917758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus.
    Gardner JG
    World J Microbiol Biotechnol; 2016 Jul; 32(7):121. PubMed ID: 27263016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems analysis of the glycoside hydrolase family 18 enzymes from
    Monge EC; Tuveng TR; Vaaje-Kolstad G; Eijsink VGH; Gardner JG
    J Biol Chem; 2018 Mar; 293(10):3849-3859. PubMed ID: 29367339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and enzymatic characterization of Amy13E from
    Mascelli GM; Garcia CA; Gardner JG
    Appl Environ Microbiol; 2024 Jan; 90(1):e0152123. PubMed ID: 38084944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complex physiology of Cellvibrio japonicus xylan degradation relies on a single cytoplasmic β-xylosidase for xylo-oligosaccharide utilization.
    Blake AD; Beri NR; Guttman HS; Cheng R; Gardner JG
    Mol Microbiol; 2018 Mar; 107(5):610-622. PubMed ID: 29266479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High cellulolytic potential of the Ktedonobacteria lineage revealed by genome-wide analysis of CAZymes.
    Zheng Y; Maruoka M; Nanatani K; Hidaka M; Abe N; Kaneko J; Sakai Y; Abe K; Yokota A; Yabe S
    J Biosci Bioeng; 2021 Jun; 131(6):622-630. PubMed ID: 33676867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of catalytic properties of multiple β-glucosidases of Trichoderma reesei.
    Guo B; Sato N; Biely P; Amano Y; Nozaki K
    Appl Microbiol Biotechnol; 2016 Jun; 100(11):4959-68. PubMed ID: 26846743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galactomannan utilization by Cellvibrio japonicus relies on a single essential α-galactosidase encoded by the aga27A gene.
    Novak JK; Gardner JG
    Mol Microbiol; 2023 Mar; 119(3):312-325. PubMed ID: 36604822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unifying themes and distinct features of carbon and nitrogen assimilation by polysaccharide-degrading bacteria: a summary of four model systems.
    Gardner JG; Schreier HJ
    Appl Microbiol Biotechnol; 2021 Nov; 105(21-22):8109-8127. PubMed ID: 34611726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo characterization of three
    Attia MA; Nelson CE; Offen WA; Jain N; Davies GJ; Gardner JG; Brumer H
    Biotechnol Biofuels; 2018; 11():45. PubMed ID: 29467823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient chito-oligosaccharide utilization requires two TonB-dependent transporters and one hexosaminidase in Cellvibrio japonicus.
    Monge EC; Gardner JG
    Mol Microbiol; 2021 Aug; 116(2):366-380. PubMed ID: 33735458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellodextrin transporters play important roles in cellulase induction in the cellulolytic fungus Penicillium oxalicum.
    Li J; Liu G; Chen M; Li Z; Qin Y; Qu Y
    Appl Microbiol Biotechnol; 2013 Dec; 97(24):10479-88. PubMed ID: 24132667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The genome sequences of Cellulomonas fimi and "Cellvibrio gilvus" reveal the cellulolytic strategies of two facultative anaerobes, transfer of "Cellvibrio gilvus" to the genus Cellulomonas, and proposal of Cellulomonas gilvus sp. nov.
    Christopherson MR; Suen G; Bramhacharya S; Jewell KA; Aylward FO; Mead D; Brumm PJ
    PLoS One; 2013; 8(1):e53954. PubMed ID: 23342046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic modeling of microbial growth, enzyme activity, and gene deletions: An integrated model of β-glucosidase function in Cellvibrio japonicus.
    Hwang J; Hari A; Cheng R; Gardner JG; Lobo D
    Biotechnol Bioeng; 2020 Dec; 117(12):3876-3890. PubMed ID: 32833226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-Frame Deletions Allow Functional Characterization of Complex Cellulose Degradation Phenotypes in Cellvibrio japonicus.
    Nelson CE; Gardner JG
    Appl Environ Microbiol; 2015 Sep; 81(17):5968-75. PubMed ID: 26116676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic investigation of the secretome of Cellvibrio japonicus during growth on chitin.
    Tuveng TR; Arntzen MØ; Bengtsson O; Gardner JG; Vaaje-Kolstad G; Eijsink VG
    Proteomics; 2016 Jul; 16(13):1904-14. PubMed ID: 27169553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus.
    DeBoy RT; Mongodin EF; Fouts DE; Tailford LE; Khouri H; Emerson JB; Mohamoud Y; Watkins K; Henrissat B; Gilbert HJ; Nelson KE
    J Bacteriol; 2008 Aug; 190(15):5455-63. PubMed ID: 18556790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose and cellodextrin utilization by the cellulolytic bacterium Cytophaga hutchisonii.
    Zhu Y; Li H; Zhou H; Chen G; Liu W
    Bioresour Technol; 2010 Aug; 101(16):6432-7. PubMed ID: 20362433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.