These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 28119038)

  • 1. Feasibility study on the application of coal gangue as landfill liner material.
    Wu H; Wen Q; Hu L; Gong M; Tang Z
    Waste Manag; 2017 May; 63():161-171. PubMed ID: 28119038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption of Pb(II), Cr(III), Cu(II), As(III) to peat, and utilization of the sorption properties in industrial waste landfill hydraulic barrier layers.
    Koivula MP; Kujala K; Rönkkömäki H; Mäkelä M
    J Hazard Mater; 2009 May; 164(1):345-52. PubMed ID: 18799267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential use of lateritic and marine clay soils as landfill liners to retain heavy metals.
    Chalermyanont T; Arrykul S; Charoenthaisong N
    Waste Manag; 2009 Jan; 29(1):117-27. PubMed ID: 18550353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the distribution and potential ecological risks of heavy metal in coal gangue.
    Sun YQ; Xiao K; Wang XD; Lv ZH; Mao M
    Environ Sci Pollut Res Int; 2021 Apr; 28(15):18604-18615. PubMed ID: 33058063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption removal of cationic dyes from aqueous solutions using ceramic adsorbents prepared from industrial waste coal gangue.
    Zhou L; Zhou H; Hu Y; Yan S; Yang J
    J Environ Manage; 2019 Mar; 234():245-252. PubMed ID: 30634117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the potential capacity as biosorbents of two MSW composts with different Cu, Pb and Zn concentrations.
    Paradelo R; Barral MT
    Bioresour Technol; 2012 Jan; 104():810-3. PubMed ID: 22119314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of volcanic soil as mineral landfill liner--III. Heavy metals retention capacity.
    Navia R; Fuentes B; Diez MC; Lorber KE
    Waste Manag Res; 2005 Jun; 23(3):260-9. PubMed ID: 15988945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of phosphate removal from aqueous solution by both coal gangues.
    Ding W; Bai S; Mu H; Naren G
    Water Sci Technol; 2017 Aug; 76(3-4):785-792. PubMed ID: 28799925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent.
    Mohan S; Gandhimathi R
    J Hazard Mater; 2009 Sep; 169(1-3):351-9. PubMed ID: 19395171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of solid waste sorption capacity for selected heavy metals in landfills.
    Suna Erses A; Fazal MA; Onay TT; Craig WH
    J Hazard Mater; 2005 May; 121(1-3):223-32. PubMed ID: 15885425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite).
    Chaturvedi PK; Seth CS; Misra V
    Chemosphere; 2006 Aug; 64(7):1109-14. PubMed ID: 16423377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A feasibility study of Indian fly ash-bentonite as an alternative adsorbent composite to sand-bentonite mixes in landfill liner.
    Gupt CB; Bordoloi S; Sekharan S; Sarmah AK
    Environ Pollut; 2020 Oct; 265(Pt A):114811. PubMed ID: 32512424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attenuation of heavy metals by geosynthetics in the coal gangue-filled columns.
    Wang P; Hu Z; Wang P
    Environ Technol; 2013; 34(17-20):2889-95. PubMed ID: 24527654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Migration behavior of landfill leachate contaminants through alternative composite liners.
    Varank G; Demir A; Top S; Sekman E; Akkaya E; Yetilmezsoy K; Bilgili MS
    Sci Total Environ; 2011 Aug; 409(17):3183-96. PubMed ID: 21621822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of food waste fraction in municipal solid waste on sorption of heavy metals.
    Onay TT; Copty NK; Demirel B; Bacioglu A
    Waste Manag Res; 2010 Oct; 28(10):936-43. PubMed ID: 19837707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Health Risk assessment of Pb and Cr leached from fly ash monolith landfill.
    Hung ML; Wu SY; Chen YC; Shih HC; Yu YH; Ma HW
    J Hazard Mater; 2009 Dec; 172(1):316-23. PubMed ID: 19643533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of waste coal gangue and its application in the removal of Mn(2+) from aqueous solution.
    Qiu R; Cheng F
    Water Sci Technol; 2016; 74(2):524-34. PubMed ID: 27438259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental impact assessment of acidic coal gangue leaching solution on groundwater: a coal gangue pile in Shanxi, China.
    Guo Y; Li X; Li Q; Hu Z
    Environ Geochem Health; 2024 Mar; 46(4):120. PubMed ID: 38483685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of isosaccharinic acid (ISA) on the mobilization of metals in municipal solid waste incineration (MSWI) dry scrubber residue.
    Svensson M; Berg M; Ifwer K; Sjöblom R; Ecke H
    J Hazard Mater; 2007 Jun; 144(1-2):477-84. PubMed ID: 17118536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of sepiolite materials as a bottom liner material in solid waste landfills.
    Guney Y; Cetin B; Aydilek AH; Tanyu BF; Koparal S
    Waste Manag; 2014 Jan; 34(1):112-24. PubMed ID: 24220149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.