These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 28119716)
1. Durum Wheat Roots Adapt to Salinity Remodeling the Cellular Content of Nitrogen Metabolites and Sucrose. Annunziata MG; Ciarmiello LF; Woodrow P; Maximova E; Fuggi A; Carillo P Front Plant Sci; 2016; 7():2035. PubMed ID: 28119716 [TBL] [Abstract][Full Text] [Related]
2. Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Carillo P; Mastrolonardo G; Nacca F; Fuggi A Funct Plant Biol; 2005 May; 32(3):209-219. PubMed ID: 32689125 [TBL] [Abstract][Full Text] [Related]
3. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Woodrow P; Ciarmiello LF; Annunziata MG; Pacifico S; Iannuzzi F; Mirto A; D'Amelia L; Dell'Aversana E; Piccolella S; Fuggi A; Carillo P Physiol Plant; 2017 Mar; 159(3):290-312. PubMed ID: 27653956 [TBL] [Abstract][Full Text] [Related]
4. Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Carillo P; Mastrolonardo G; Nacca F; Parisi D; Verlotta A; Fuggi A Funct Plant Biol; 2008 Jul; 35(5):412-426. PubMed ID: 32688798 [TBL] [Abstract][Full Text] [Related]
5. Naringenin induces tolerance to salt/osmotic stress through the regulation of nitrogen metabolism, cellular redox and ROS scavenging capacity in bean plants. Ozfidan-Konakci C; Yildiztugay E; Alp FN; Kucukoduk M; Turkan I Plant Physiol Biochem; 2020 Dec; 157():264-275. PubMed ID: 33152645 [TBL] [Abstract][Full Text] [Related]
6. Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. Singh M; Singh VP; Prasad SM Plant Physiol Biochem; 2016 Dec; 109():72-83. PubMed ID: 27639963 [TBL] [Abstract][Full Text] [Related]
7. Expression dynamics of genes encoding nitrate and ammonium assimilation enzymes in rice genotypes exposed to reproductive stage salinity stress. Sathee L; Jha SK; Rajput OS; Singh D; Kumar S; Kumar A Plant Physiol Biochem; 2021 Aug; 165():161-172. PubMed ID: 34044225 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen form differently modulates growth, metabolite profile, and antioxidant and nitrogen metabolism activities in roots of Spartina alterniflora in response to increasing salinity. Hessini K Plant Physiol Biochem; 2022 Mar; 174():35-42. PubMed ID: 35121483 [TBL] [Abstract][Full Text] [Related]
9. The potential of foliar application of nano-chitosan-encapsulated nano-silicon donor in amelioration the adverse effect of salinity in the wheat plant. Hajihashemi S; Kazemi S BMC Plant Biol; 2022 Mar; 22(1):148. PubMed ID: 35346042 [TBL] [Abstract][Full Text] [Related]
10. Gene expression and physiological responses to salinity and water stress of contrasting durum wheat genotypes. Yousfi S; Márquez AJ; Betti M; Araus JL; Serret MD J Integr Plant Biol; 2016 Jan; 58(1):48-66. PubMed ID: 25869057 [TBL] [Abstract][Full Text] [Related]
11. Growth and nitrogen metabolism in Sophora japonica (L.) as affected by salinity under different nitrogen forms. Tian J; Pang Y; Yuan W; Peng J; Zhao Z Plant Sci; 2022 Sep; 322():111347. PubMed ID: 35700842 [TBL] [Abstract][Full Text] [Related]
12. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. El-Esawi MA; Alaraidh IA; Alsahli AA; Alamri SA; Ali HM; Alayafi AA Plant Physiol Biochem; 2018 Nov; 132():375-384. PubMed ID: 30268029 [TBL] [Abstract][Full Text] [Related]
14. Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl-stressed watermelon leaves and enhances short-term salt tolerance. Yang Y; Lu X; Yan B; Li B; Sun J; Guo S; Tezuka T J Plant Physiol; 2013 May; 170(7):653-61. PubMed ID: 23399406 [TBL] [Abstract][Full Text] [Related]
15. Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity. Wang ZQ; Yuan YZ; Ou JQ; Lin QH; Zhang CF J Plant Physiol; 2007 Jun; 164(6):695-701. PubMed ID: 16777263 [TBL] [Abstract][Full Text] [Related]
16. Metabolic responses of wheat seedlings to osmotic stress induced by various osmolytes under iso-osmotic conditions. Darko E; Végh B; Khalil R; Marček T; Szalai G; Pál M; Janda T PLoS One; 2019; 14(12):e0226151. PubMed ID: 31856179 [TBL] [Abstract][Full Text] [Related]
17. Salinity Duration Differently Modulates Physiological Parameters and Metabolites Profile in Roots of Two Contrasting Barley Genotypes. Dell'Aversana E; Hessini K; Ferchichi S; Fusco GM; Woodrow P; Ciarmiello LF; Abdelly C; Carillo P Plants (Basel); 2021 Feb; 10(2):. PubMed ID: 33562862 [No Abstract] [Full Text] [Related]
18. The up-regulation of proline synthesis in the meristematic tissues of wheat seedlings upon short-term exposure to osmotic stress. Koenigshofer H; Loeppert HG J Plant Physiol; 2019 Jun; 237():21-29. PubMed ID: 30999074 [TBL] [Abstract][Full Text] [Related]
19. Effect of saline irrigation on plant water traits, photosynthesis and ionic balance in durum wheat genotypes. Soni S; Kumar A; Sehrawat N; Kumar A; Kumar N; Lata C; Mann A Saudi J Biol Sci; 2021 Apr; 28(4):2510-2517. PubMed ID: 33911962 [TBL] [Abstract][Full Text] [Related]
20. Genetic variation in tolerance to the osmotic stress componentof salinity stress in durum wheat. James RA; von Caemmerer S; Condon AGT; Zwart AB; Munns R Funct Plant Biol; 2008 Apr; 35(2):111-123. PubMed ID: 32688762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]