These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28119874)

  • 1. Performance and energy systems contributions during upper-body sprint interval exercise.
    Franchini E; Takito MY; Dal'Molin Kiss MA
    J Exerc Rehabil; 2016 Dec; 12(6):535-541. PubMed ID: 28119874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy System Contributions in Upper and Lower Body Wingate Tests in Highly Trained Athletes.
    Julio UF; Panissa VLG; Cury RL; Agostinho MF; Esteves JVDC; Franchini E
    Res Q Exerc Sport; 2019 Jun; 90(2):244-250. PubMed ID: 30908121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in energy system contribution following upper body sprint interval training.
    La Monica MB; Fukuda DH; Starling-Smith TM; Clark NW; Panissa VLG
    Eur J Appl Physiol; 2020 Mar; 120(3):643-651. PubMed ID: 31974857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy System Contributions during Olympic Combat Sports: A Narrative Review.
    Franchini E
    Metabolites; 2023 Feb; 13(2):. PubMed ID: 36837916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy pathway contributions during 60-second upper-body Wingate test in Greco-Roman wrestlers: intermittent versus single forms.
    Ulupınar S; Özbay S
    Res Sports Med; 2022; 30(3):244-255. PubMed ID: 33663306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oral Adenosine-5'-triphosphate (ATP) Administration Increases Postexercise ATP Levels, Muscle Excitability, and Athletic Performance Following a Repeated Sprint Bout.
    Purpura M; Rathmacher JA; Sharp MH; Lowery RP; Shields KA; Partl JM; Wilson JM; Jäger R
    J Am Coll Nutr; 2017; 36(3):177-183. PubMed ID: 28080323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-System Contributions to Simulated Judo Matches.
    Julio UF; Panissa VLG; Esteves JV; Cury RL; Agostinho MF; Franchini E
    Int J Sports Physiol Perform; 2017 May; 12(5):676-683. PubMed ID: 27736247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise.
    Bogdanis GC; Nevill ME; Boobis LH; Lakomy HK
    J Appl Physiol (1985); 1996 Mar; 80(3):876-84. PubMed ID: 8964751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological Profiling and Energy System Contributions During Simulated Epée Matches in Elite Fencers.
    Yang WH; Park JH; Shin YC; Kim J
    Int J Sports Physiol Perform; 2022 Jun; 17(6):943-950. PubMed ID: 35290960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of muscle phosphocreatine during intermittent maximal cycling.
    Trump ME; Heigenhauser GJ; Putman CT; Spriet LL
    J Appl Physiol (1985); 1996 May; 80(5):1574-80. PubMed ID: 8727542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-energy phosphate metabolism during two bouts of progressive calf exercise in humans measured by phosphorus-31 magnetic resonance spectroscopy.
    Schocke MF; Esterhammer R; Arnold W; Kammerlander C; Burtscher M; Fraedrich G; Jaschke WR; Greiner A
    Eur J Appl Physiol; 2005 Jan; 93(4):469-79. PubMed ID: 15517340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caffeine Ingestion Increases Estimated Glycolytic Metabolism during Taekwondo Combat Simulation but Does Not Improve Performance or Parasympathetic Reactivation.
    Lopes-Silva JP; Silva Santos JF; Branco BH; Abad CC; Oliveira LF; Loturco I; Franchini E
    PLoS One; 2015; 10(11):e0142078. PubMed ID: 26539982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle power and metabolism in maximal intermittent exercise.
    McCartney N; Spriet LL; Heigenhauser GJ; Kowalchuk JM; Sutton JR; Jones NL
    J Appl Physiol (1985); 1986 Apr; 60(4):1164-9. PubMed ID: 3700299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of sprint distance and repetition number on energy system contributions in soccer players.
    Ulupınar S; Özbay S; Gençoğlu C; Franchini E; Kishalı NF; İnce İ
    J Exerc Sci Fit; 2021 Jul; 19(3):182-188. PubMed ID: 33889186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic response of type I and II muscle fibers during repeated bouts of maximal exercise in humans.
    Casey A; Constantin-Teodosiu D; Howell S; Hultman E; Greenhaff PL
    Am J Physiol; 1996 Jul; 271(1 Pt 1):E38-43. PubMed ID: 8760079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in metabolic and inflammatory responses in lower and upper body high-intensity intermittent exercise.
    Lira FS; Panissa VL; Julio UF; Franchini E
    Eur J Appl Physiol; 2015 Jul; 115(7):1467-74. PubMed ID: 25688040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship of recovery from intensive exercise to the oxidative potential of skeletal muscle.
    Jansson E; Dudley GA; Norman B; Tesch PA
    Acta Physiol Scand; 1990 May; 139(1):147-52. PubMed ID: 2356745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of energy systems during a Wingate power test.
    Smith JC; Hill DW
    Br J Sports Med; 1991 Dec; 25(4):196-9. PubMed ID: 1839780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An elliptical trainer may render the Wingate all-out test more anaerobic.
    Ozkaya O; Colakoglu M; Kuzucu EO; Delextrat A
    J Strength Cond Res; 2014 Mar; 28(3):643-50. PubMed ID: 23924890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle oxygen uptake and energy turnover during dynamic exercise at different contraction frequencies in humans.
    Ferguson RA; Ball D; Krustrup P; Aagaard P; Kjaer M; Sargeant AJ; Hellsten Y; Bangsbo J
    J Physiol; 2001 Oct; 536(Pt 1):261-71. PubMed ID: 11579174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.