BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 28119976)

  • 1. The effect of defect types on the electronic and optical properties of graphene nanoflakes physisorbed by ionic liquids.
    Shakourian-Fard M; Kamath G
    Phys Chem Chem Phys; 2017 Feb; 19(6):4383-4395. PubMed ID: 28119976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Charge-Transfer Doping of Graphene Nanoflakes Containing Double-Vacancy (5-8-5) and Stone-Wales (55-77) Defects through Molecular Adsorption.
    Shakourian-Fard M; Jamshidi Z; Kamath G
    Chemphyschem; 2016 Oct; 17(20):3289-3299. PubMed ID: 27432283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geminal Dicationic Ionic Liquids (GDILs) and Their Adsorption on Graphene Nanoflakes.
    Shakourian-Fard M; Ghenaatian HR; Kamath G
    ACS Omega; 2024 Feb; 9(7):7575-7587. PubMed ID: 38405523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of shape, size, and pyrene doping on electronic properties of graphene nanoflakes.
    Kuamit T; Ratanasak M; Rungnim C; Parasuk V
    J Mol Model; 2017 Nov; 23(12):355. PubMed ID: 29177727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of Tunable aryl alkyl ionic liquids (TILs) on the graphene and Defective graphene nanosheets: A DFT Study.
    Shakouri S; Khalili B; Nikpasand M; Kefayati H
    J Mol Graph Model; 2023 Dec; 125():108612. PubMed ID: 37657330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect-Based Modulation of Optoelectronic Properties for Biofunctionalized Hexagonal Boron Nitride Nanosheets.
    Shakourian-Fard M; Heydari H; Kamath G
    Chemphyschem; 2017 Sep; 18(17):2328-2335. PubMed ID: 28632959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes.
    Hu W; Lin L; Yang C; Yang J
    J Chem Phys; 2014 Dec; 141(21):214704. PubMed ID: 25481158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical properties of graphene nanoflakes: Shape matters.
    Mansilla Wettstein C; Bonafé FP; Oviedo MB; Sánchez CG
    J Chem Phys; 2016 Jun; 144(22):224305. PubMed ID: 27306005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aromaticity of graphene nanoflakes in a new way: fragment analysis by combination of the nucleus-independent chemical shifts and the anisotropy of current induced density.
    Li Q; Li CM; Xu HL; Su ZM
    J Mol Model; 2017 Aug; 23(8):231. PubMed ID: 28726151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and photophysical properties of stilbeneoctasilsesquioxanes. Emission behavior coupled with theoretical modeling studies suggest a 3-D excited state involving the silica core.
    Laine RM; Sulaiman S; Brick C; Roll M; Tamaki R; Asuncion MZ; Neurock M; Filhol JS; Lee CY; Zhang J; Goodson T; Ronchi M; Pizzotti M; Rand SC; Li Y
    J Am Chem Soc; 2010 Mar; 132(11):3708-22. PubMed ID: 20187633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the nature of interaction and stability between DNA/RNA base pairs and defective & defect-dopant graphene sheets. A possible insights on DNA/RNA sequencing.
    Saravanan V; Rajamani A; Vasudevan S; Ramasamy S
    Int J Biol Macromol; 2020 Mar; 146():387-404. PubMed ID: 31917208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the efficiency of polymerase chain reaction using graphene nanoflakes.
    Abdul Khaliq R; Kafafy R; Salleh HM; Faris WF
    Nanotechnology; 2012 Nov; 23(45):455106. PubMed ID: 23085573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of nucleobases with silicon doped and defective silicon doped graphene and optical properties.
    Mudedla SK; Balamurugan K; Kamaraj M; Subramanian V
    Phys Chem Chem Phys; 2016 Jan; 18(1):295-309. PubMed ID: 26607270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defects in graphene-based twisted nanoribbons: structural, electronic, and optical properties.
    Caetano EW; Freire VN; dos Santos SG; Albuquerque EL; Galvão DS; Sato F
    Langmuir; 2009 Apr; 25(8):4751-9. PubMed ID: 19239222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Dynamics Study of Graphene Nanoflake Shuttle Device on Graphene Nanoribbon with Carbon Nanotube Blocks.
    Kang JW; Kim KS; Kwon OK
    J Nanosci Nanotechnol; 2020 Sep; 20(9):5570-5574. PubMed ID: 32331136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing the interactions between pentagon-octagon-pentagon defect graphene and organic donor/acceptor molecules: a theoretical study.
    Li JW; Liu YY; Xie LH; Shang JZ; Qian Y; Yi MD; Yu T; Huang W
    Phys Chem Chem Phys; 2015 Feb; 17(7):4919-25. PubMed ID: 25559269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DFT study of interaction of Palladium Pd
    Ghenaatian HR; Shakourian-Fard M; Alizadeh V; Kamath G
    J Mol Graph Model; 2022 Jan; 110():108072. PubMed ID: 34798369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of nitrogen-doped graphene nanoflakes: Stability and spectroscopy depending on dopant types and flake sizes.
    Lin CK
    J Comput Chem; 2018 Jul; 39(20):1387-1397. PubMed ID: 29504131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron(II) Phthalocyanine Adsorbed on Defective Graphenes: A Density Functional Study.
    Yin H; Lin H; Zhang Y; Huang S
    ACS Omega; 2022 Dec; 7(48):43915-43922. PubMed ID: 36506202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ fabrication of quasi-free-standing epitaxial graphene nanoflakes on gold.
    Leicht P; Zielke L; Bouvron S; Moroni R; Voloshina E; Hammerschmidt L; Dedkov YS; Fonin M
    ACS Nano; 2014 Apr; 8(4):3735-42. PubMed ID: 24694063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.