These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 28120242)
1. Improvement of AD Biosynthesis Response to Enhanced Oxygen Transfer by Oxygen Vectors in Mycobacterium neoaurum TCCC 11979. Su L; Shen Y; Gao T; Luo J; Wang M Appl Biochem Biotechnol; 2017 Aug; 182(4):1564-1574. PubMed ID: 28120242 [TBL] [Abstract][Full Text] [Related]
2. Cofactor engineering to regulate NAD Su L; Shen Y; Zhang W; Gao T; Shang Z; Wang M Microb Cell Fact; 2017 Oct; 16(1):182. PubMed ID: 29084539 [TBL] [Abstract][Full Text] [Related]
3. A mutant form of 3-ketosteroid-Δ(1)-dehydrogenase gives altered androst-1,4-diene-3, 17-dione/androst-4-ene-3,17-dione molar ratios in steroid biotransformations by Mycobacterium neoaurum ST-095. Shao M; Zhang X; Rao Z; Xu M; Yang T; Li H; Xu Z; Yang S J Ind Microbiol Biotechnol; 2016 May; 43(5):691-701. PubMed ID: 26886757 [TBL] [Abstract][Full Text] [Related]
4. Overexpression of cytochrome p450 125 in Mycobacterium: a rational strategy in the promotion of phytosterol biotransformation. Su L; Shen Y; Xia M; Shang Z; Xu S; An X; Wang M J Ind Microbiol Biotechnol; 2018 Oct; 45(10):857-867. PubMed ID: 30073539 [TBL] [Abstract][Full Text] [Related]
5. The Sterol Carrier Hydroxypropyl-β-Cyclodextrin Enhances the Metabolism of Phytosterols by Mycobacterium neoaurum. Su L; Xu S; Shen Y; Xia M; Ren X; Wang L; Shang Z; Wang M Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32414803 [TBL] [Abstract][Full Text] [Related]
6. Efficient production of androstenedione by repeated batch fermentation in waste cooking oil media through regulating NAD Zhou X; Zhang Y; Shen Y; Zhang X; Xu S; Shang Z; Xia M; Wang M Bioresour Technol; 2019 May; 279():209-217. PubMed ID: 30735930 [TBL] [Abstract][Full Text] [Related]
7. Influence of hydroxypropyl-β-cyclodextrin on phytosterol biotransformation by different strains of Mycobacterium neoaurum. Shen YB; Wang M; Li HN; Wang YB; Luo JM J Ind Microbiol Biotechnol; 2012 Sep; 39(9):1253-9. PubMed ID: 22614451 [TBL] [Abstract][Full Text] [Related]
8. Genetic differences in ksdD influence on the ADD/AD ratio of Mycobacterium neoaurum. Xie R; Shen Y; Qin N; Wang Y; Su L; Wang M J Ind Microbiol Biotechnol; 2015 Apr; 42(4):507-13. PubMed ID: 25572208 [TBL] [Abstract][Full Text] [Related]
10. Engineered 3-Ketosteroid 9α-Hydroxylases in Mycobacterium neoaurum: an Efficient Platform for Production of Steroid Drugs. Liu HH; Xu LQ; Yao K; Xiong LB; Tao XY; Liu M; Wang FQ; Wei DZ Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728384 [TBL] [Abstract][Full Text] [Related]
11. Improving phytosterol biotransformation at low nitrogen levels by enhancing the methylcitrate cycle with transcriptional regulators PrpR and GlnR of Mycobacterium neoaurum. Zhang Y; Zhou X; Wang X; Wang L; Xia M; Luo J; Shen Y; Wang M Microb Cell Fact; 2020 Jan; 19(1):13. PubMed ID: 31992309 [TBL] [Abstract][Full Text] [Related]
12. Bioconversion of 4-androstene-3,17-dione to androst-1,4-diene-3,17-dione by recombinant Bacillus subtilis expressing ksdd gene encoding 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum JC-12. Zhang W; Shao M; Rao Z; Xu M; Zhang X; Yang T; Li H; Xu Z J Steroid Biochem Mol Biol; 2013 May; 135():36-42. PubMed ID: 23298646 [TBL] [Abstract][Full Text] [Related]
13. Nitrate Metabolism Decreases the Steroidal Alcohol Byproduct Compared with Ammonium in Biotransformation of Phytosterol to Androstenedione by Mycobacterium neoaurum. Wang X; Chen R; Wu Y; Wang D; Wei D Appl Biochem Biotechnol; 2020 Apr; 190(4):1553-1560. PubMed ID: 31792785 [TBL] [Abstract][Full Text] [Related]
14. Effects of Different Carbon Sources on Growth, Membrane Permeability, β-Sitosterol Consumption, Androstadienedione and Androstenedione Production by Mycobacterium neoaurum. Yin Y Interdiscip Sci; 2016 Mar; 8(1):102-7. PubMed ID: 26298579 [TBL] [Abstract][Full Text] [Related]
15. Role Identification and Application of SigD in the Transformation of Soybean Phytosterol to 9α-Hydroxy-4-androstene-3,17-dione in Mycobacterium neoaurum. Xiong LB; Liu HH; Xu LQ; Wei DZ; Wang FQ J Agric Food Chem; 2017 Jan; 65(3):626-631. PubMed ID: 28035826 [TBL] [Abstract][Full Text] [Related]
16. [Mutation breeding of high 9α-hydroxy-androst-4-ene-3,17- dione transforming strains from phytosterols and their conversion process optimization]. Ma Y; Wang X; Wang M; Li H; Shi J; Xu Z Sheng Wu Gong Cheng Xue Bao; 2017 Jul; 33(7):1198-1206. PubMed ID: 28869739 [TBL] [Abstract][Full Text] [Related]
18. Genetic Techniques for Manipulation of the Phytosterol Biotransformation Strain Mycobacterium neoaurum NRRL B-3805. Loraine JK; Smith MCM Methods Mol Biol; 2017; 1645():93-108. PubMed ID: 28710623 [TBL] [Abstract][Full Text] [Related]
19. Production of 4-androstene-3,17-dione and 1,4-androstadiene-3,17-dione from rice germ and wheat germ extracts by Mycobacterium sp. Saraphanchotiwitthaya A; Sripalakit P Biotechnol Lett; 2016 Sep; 38(9):1595-602. PubMed ID: 27262293 [TBL] [Abstract][Full Text] [Related]
20. Two-Step Bioprocess for Reducing Nucleus Degradation in Phytosterol Bioconversion by Mycobacterium neoaurum NwIB-R10 Wang X; Hua C; Xu X; Wei D Appl Biochem Biotechnol; 2019 May; 188(1):138-146. PubMed ID: 30370444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]