BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28120367)

  • 1. Photoelectrochemical Reduction of Carbon Dioxide to Methanol through a Highly Efficient Enzyme Cascade.
    Kuk SK; Singh RK; Nam DH; Singh R; Lee JK; Park CB
    Angew Chem Int Ed Engl; 2017 Mar; 56(14):3827-3832. PubMed ID: 28120367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bioinspired construction of an ordered carbon nitride array for photocatalytic mediated enzymatic reduction.
    Liu J; Cazelles R; Chen ZP; Zhou H; Galarneau A; Antonietti M
    Phys Chem Chem Phys; 2014 Jul; 16(28):14699-705. PubMed ID: 24915954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of Artificial Photosynthesis System for Enhanced Electronic Energy-Transfer Efficacy: A Case Study for Solar-Energy Driven Bioconversion of Carbon Dioxide to Methanol.
    Ji X; Su Z; Wang P; Ma G; Zhang S
    Small; 2016 Sep; 12(34):4753-62. PubMed ID: 27273818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectrocatalytic reduction of CO
    Lian Z; Pan D; Wang W; Zhang D; Li G; Li H
    J Environ Sci (China); 2017 Oct; 60():108-113. PubMed ID: 29031439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid technologies for an enhanced carbon recycling based on the enzymatic reduction of CO2 to methanol in water: chemical and photochemical NADH regeneration.
    Dibenedetto A; Stufano P; Macyk W; Baran T; Fragale C; Costa M; Aresta M
    ChemSusChem; 2012 Feb; 5(2):373-8. PubMed ID: 22337652
    [No Abstract]   [Full Text] [Related]  

  • 6. Ordered Coimmobilization of a Multienzyme Cascade System with a Metal Organic Framework in a Membrane: Reduction of CO
    Zhu D; Ao S; Deng H; Wang M; Qin C; Zhang J; Jia Y; Ye P; Ni H
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33581-33588. PubMed ID: 31419104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic conversion of carbon dioxide.
    Shi J; Jiang Y; Jiang Z; Wang X; Wang X; Zhang S; Han P; Yang C
    Chem Soc Rev; 2015 Oct; 44(17):5981-6000. PubMed ID: 26055659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion.
    Zhang D; Shi J; Zi W; Wang P; Liu SF
    ChemSusChem; 2017 Nov; 10(22):4324-4341. PubMed ID: 28977741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete oxidation of methanol in biobattery devices using a hydrogel created from three modified dehydrogenases.
    Kim YH; Campbell E; Yu J; Minteer SD; Banta S
    Angew Chem Int Ed Engl; 2013 Jan; 52(5):1437-40. PubMed ID: 23239008
    [No Abstract]   [Full Text] [Related]  

  • 10. Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes.
    Ji X; Su Z; Wang P; Ma G; Zhang S
    ACS Nano; 2015; 9(4):4600-10. PubMed ID: 25857747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly selective solar-driven methanol from CO2 by a photocatalyst/biocatalyst integrated system.
    Yadav RK; Oh GH; Park NJ; Kumar A; Kong KJ; Baeg JO
    J Am Chem Soc; 2014 Dec; 136(48):16728-31. PubMed ID: 25405924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semiconductor-Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis.
    Pang H; Masuda T; Ye J
    Chem Asian J; 2018 Jan; 13(2):127-142. PubMed ID: 29193762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular approaches to the electrochemical reduction of carbon dioxide.
    Finn C; Schnittger S; Yellowlees LJ; Love JB
    Chem Commun (Camb); 2012 Feb; 48(10):1392-9. PubMed ID: 22116300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol.
    Rajeshwar K; de Tacconi NR; Ghadimkhani G; Chanmanee W; Janáky C
    Chemphyschem; 2013 Jul; 14(10):2251-9. PubMed ID: 23712877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar-Assisted eBiorefinery: Photoelectrochemical Pairing of Oxyfunctionalization and Hydrogenation Reactions.
    Choi DS; Kim J; Hollmann F; Park CB
    Angew Chem Int Ed Engl; 2020 Sep; 59(37):15886-15890. PubMed ID: 32495457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrometabolic Pathways: Recent Developments in Bioelectrocatalytic Cascades.
    Hickey DP; Gaffney EM; Minteer SD
    Top Curr Chem (Cham); 2018 Nov; 376(6):43. PubMed ID: 30390159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the Enzymatic Cascade of Reactions for the Reduction of CO
    Di Spiridione C; Aresta M; Dibenedetto A
    Molecules; 2022 Aug; 27(15):. PubMed ID: 35956865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shedding light on biocatalysis: photoelectrochemical platforms for solar-driven biotransformation.
    Kim J; Park CB
    Curr Opin Chem Biol; 2019 Apr; 49():122-129. PubMed ID: 30612059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO
    Antonopoulou I; Rova U; Christakopoulos P
    Methods Mol Biol; 2022; 2487():317-344. PubMed ID: 35687244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol.
    Cheng H; Huang B; Liu Y; Wang Z; Qin X; Zhang X; Dai Y
    Chem Commun (Camb); 2012 Oct; 48(78):9729-31. PubMed ID: 22914674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.