These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 28120511)
1. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats. Chen C; Zhao ML; Zhang RK; Lu G; Zhao CY; Fu F; Sun HT; Zhang S; Tu Y; Li XH J Biomed Mater Res A; 2017 May; 105(5):1324-1332. PubMed ID: 28120511 [TBL] [Abstract][Full Text] [Related]
2. 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury. Sun Y; Yang C; Zhu X; Wang JJ; Liu XY; Yang XP; An XW; Liang J; Dong HJ; Jiang W; Chen C; Wang ZG; Sun HT; Tu Y; Zhang S; Chen F; Li XH J Biomed Mater Res A; 2019 Sep; 107(9):1898-1908. PubMed ID: 30903675 [TBL] [Abstract][Full Text] [Related]
3. [PREPARATION OF BIONIC COLLAGEN-HEPARIN SULFATE SPINAL CORD SCAFFOLD WITH THREE-DIMENSIONAL PRINT TECHNOLOGY]. Zhang R; Tu Y; Zhao M; Chen C; Liang Haiqian ; Wang J; Zhang S; Li X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Aug; 29(8):1022-7. PubMed ID: 26677627 [TBL] [Abstract][Full Text] [Related]
4. The corticospinal tract structure of collagen/silk fibroin scaffold implants using 3D printing promotes functional recovery after complete spinal cord transection in rats. Li XH; Zhu X; Liu XY; Xu HH; Jiang W; Wang JJ; Chen F; Zhang S; Li RX; Chen XY; Tu Y J Mater Sci Mater Med; 2021 Mar; 32(4):31. PubMed ID: 33751254 [TBL] [Abstract][Full Text] [Related]
5. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Fan C; Li X; Xiao Z; Zhao Y; Liang H; Wang B; Han S; Li X; Xu B; Wang N; Liu S; Xue W; Dai J Acta Biomater; 2017 Mar; 51():304-316. PubMed ID: 28069497 [TBL] [Abstract][Full Text] [Related]
6. Effect of decellularized spinal scaffolds on spinal axon regeneration in rats. Zhu J; Lu Y; Yu F; Zhou L; Shi J; Chen Q; Ding W; Wen X; Ding YQ; Mei J; Wang J J Biomed Mater Res A; 2018 Mar; 106(3):698-705. PubMed ID: 28986946 [TBL] [Abstract][Full Text] [Related]
7. Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair. Liu T; Xu J; Chan BP; Chew SY J Biomed Mater Res A; 2012 Jan; 100(1):236-42. PubMed ID: 22042649 [TBL] [Abstract][Full Text] [Related]
8. A novel composite type I collagen scaffold with micropatterned porosity regulates the entrance of phagocytes in a severe model of spinal cord injury. Snider S; Cavalli A; Colombo F; Gallotti AL; Quattrini A; Salvatore L; Madaghiele M; Terreni MR; Sannino A; Mortini P J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):1040-1053. PubMed ID: 26958814 [TBL] [Abstract][Full Text] [Related]
9. Functionalized collagen scaffold implantation and cAMP administration collectively facilitate spinal cord regeneration. Li X; Han J; Zhao Y; Ding W; Wei J; Li J; Han S; Shang X; Wang B; Chen B; Xiao Z; Dai J Acta Biomater; 2016 Jan; 30():233-245. PubMed ID: 26593786 [TBL] [Abstract][Full Text] [Related]
10. 3D printing of injury-preconditioned secretome/collagen/heparan sulfate scaffolds for neurological recovery after traumatic brain injury in rats. Liu XY; Chang ZH; Chen C; Liang J; Shi JX; Fan X; Shao Q; Meng WW; Wang JJ; Li XH Stem Cell Res Ther; 2022 Dec; 13(1):525. PubMed ID: 36536463 [TBL] [Abstract][Full Text] [Related]
11. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/β-catenin signaling for spinal cord injury repair. Li X; Fan C; Xiao Z; Zhao Y; Zhang H; Sun J; Zhuang Y; Wu X; Shi J; Chen Y; Dai J Biomaterials; 2018 Nov; 183():114-127. PubMed ID: 30153562 [TBL] [Abstract][Full Text] [Related]
12. Polycaprolactone/polysialic acid hybrid, multifunctional nanofiber scaffolds for treatment of spinal cord injury. Zhang S; Wang XJ; Li WS; Xu XL; Hu JB; Kang XQ; Qi J; Ying XY; You J; Du YZ Acta Biomater; 2018 Sep; 77():15-27. PubMed ID: 30126591 [TBL] [Abstract][Full Text] [Related]
13. Collagen/heparin sulfate scaffold combined with mesenchymal stem cells treatment for canines with spinal cord injury: A pilot feasibility study. Deng WS; Yang K; Liang B; Liu YF; Chen XY; Zhang S J Orthop Surg (Hong Kong); 2021; 29(2):23094990211012293. PubMed ID: 34060363 [TBL] [Abstract][Full Text] [Related]
14. Coaxial 3D printing of hierarchical structured hydrogel scaffolds for on-demand repair of spinal cord injury. Li Y; Cheng S; Wen H; Xiao L; Deng Z; Huang J; Zhang Z Acta Biomater; 2023 Sep; 168():400-415. PubMed ID: 37479156 [TBL] [Abstract][Full Text] [Related]
15. Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair. Li X; Xiao Z; Han J; Chen L; Xiao H; Ma F; Hou X; Li X; Sun J; Ding W; Zhao Y; Chen B; Dai J Biomaterials; 2013 Jul; 34(21):5107-16. PubMed ID: 23591390 [TBL] [Abstract][Full Text] [Related]
16. Functional improvement following implantation of a microstructured, type-I collagen scaffold into experimental injuries of the adult rat spinal cord. Altinova H; Möllers S; Führmann T; Deumens R; Bozkurt A; Heschel I; Damink LH; Schügner F; Weis J; Brook GA Brain Res; 2014 Oct; 1585():37-50. PubMed ID: 25193604 [TBL] [Abstract][Full Text] [Related]
17. Thermosensitive heparin-poloxamer hydrogels enhance the effects of GDNF on neuronal circuit remodeling and neuroprotection after spinal cord injury. Zhao YZ; Jiang X; Lin Q; Xu HL; Huang YD; Lu CT; Cai J J Biomed Mater Res A; 2017 Oct; 105(10):2816-2829. PubMed ID: 28593744 [TBL] [Abstract][Full Text] [Related]
18. Bone marrow-derived mesenchymal stem cells in three-dimensional culture promote neuronal regeneration by neurotrophic protection and immunomodulation. Han S; Wang B; Li X; Xiao Z; Han J; Zhao Y; Fang Y; Yin Y; Chen B; Dai J J Biomed Mater Res A; 2016 Jul; 104(7):1759-69. PubMed ID: 26990583 [TBL] [Abstract][Full Text] [Related]
19. Multichannel silk protein/laminin grafts for spinal cord injury repair. Zhang Q; Yan S; You R; Kaplan DL; Liu Y; Qu J; Li X; Li M; Wang X J Biomed Mater Res A; 2016 Dec; 104(12):3045-3057. PubMed ID: 27474892 [TBL] [Abstract][Full Text] [Related]
20. Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine. Han S; Xiao Z; Li X; Zhao H; Wang B; Qiu Z; Li Z; Mei X; Xu B; Fan C; Chen B; Han J; Gu Y; Yang H; Shi Q; Dai J Sci China Life Sci; 2018 Jan; 61(1):2-13. PubMed ID: 28527111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]