These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 28120532)
1. Extracellular Nucleotide Hydrolysis in Dermal and Limbal Mesenchymal Stem Cells: A Source of Adenosine Production. Naasani LIS; Rodrigues C; de Campos RP; Beckenkamp LR; Iser IC; Bertoni APS; Wink MR J Cell Biochem; 2017 Aug; 118(8):2430-2442. PubMed ID: 28120532 [TBL] [Abstract][Full Text] [Related]
2. Chondrogenic Differentiation of Human Mesenchymal Stem Cells Results in Substantial Changes of Ecto-Nucleotides Metabolism. Roszek K; Porowińska D; Bajek A; Hołysz M; Czarnecka J J Cell Biochem; 2015 Dec; 116(12):2915-23. PubMed ID: 26018728 [TBL] [Abstract][Full Text] [Related]
3. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Kang R; Zhou Y; Tan S; Zhou G; Aagaard L; Xie L; Bünger C; Bolund L; Luo Y Stem Cell Res Ther; 2015 Aug; 6(1):144. PubMed ID: 26282538 [TBL] [Abstract][Full Text] [Related]
4. The effect of fibroblast growth factor on distinct differentiation potential of cord blood-derived unrestricted somatic stem cells and Wharton's jelly-derived mesenchymal stem/stromal cells. Lee S; Park BJ; Kim JY; Jekarl D; Choi HY; Lee SY; Kim M; Kim Y; Park MS Cytotherapy; 2015 Dec; 17(12):1723-31. PubMed ID: 26589753 [TBL] [Abstract][Full Text] [Related]
6. Iberian pig mesenchymal stem/stromal cells from dermal skin, abdominal and subcutaneous adipose tissues, and peripheral blood: in vitro characterization and migratory properties in inflammation. Calle A; Barrajón-Masa C; Gómez-Fidalgo E; Martín-Lluch M; Cruz-Vigo P; Sánchez-Sánchez R; Ramírez MÁ Stem Cell Res Ther; 2018 Jul; 9(1):178. PubMed ID: 29973295 [TBL] [Abstract][Full Text] [Related]
7. [Proliferation and differentiation characteristics of human bone marrow mesenchymal stem cells during ex-vivo expansion]. Hu JB; Zhou Y; Jiang DD; Tan WS Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2006 Jan; 22(1):7-10. PubMed ID: 16388733 [TBL] [Abstract][Full Text] [Related]
8. New insights into the cellular makeup and progenitor potential of palatal connective tissues. Pall E; Cenariu M; Kasaj A; Florea A; Soancă A; Roman A; Georgiu C Microsc Res Tech; 2017 Dec; 80(12):1270-1282. PubMed ID: 28816410 [TBL] [Abstract][Full Text] [Related]
9. MSCs can be differentially isolated from maternal, middle and fetal segments of the human umbilical cord. Lim J; Razi ZR; Law J; Nawi AM; Idrus RB; Ng MH Cytotherapy; 2016 Dec; 18(12):1493-1502. PubMed ID: 27727016 [TBL] [Abstract][Full Text] [Related]
10. Characterization of progenitor cells derived from torn human rotator cuff tendons by gene expression patterns of chondrogenesis, osteogenesis, and adipogenesis. Nagura I; Kokubu T; Mifune Y; Inui A; Takase F; Ueda Y; Kataoka T; Kurosaka M J Orthop Surg Res; 2016 Mar; 11():40. PubMed ID: 27036202 [TBL] [Abstract][Full Text] [Related]
11. Prospectively Isolated Human Bone Marrow Cell-Derived MSCs Support Primitive Human CD34-Negative Hematopoietic Stem Cells. Matsuoka Y; Nakatsuka R; Sumide K; Kawamura H; Takahashi M; Fujioka T; Uemura Y; Asano H; Sasaki Y; Inoue M; Ogawa H; Takahashi T; Hino M; Sonoda Y Stem Cells; 2015 May; 33(5):1554-65. PubMed ID: 25537923 [TBL] [Abstract][Full Text] [Related]
12. Human intraoral harvested mesenchymal stem cells: characterization, multilineage differentiation analysis, and 3-dimensional migration of natural bone mineral and tricalcium phosphate scaffolds. Lohberger B; Payer M; Rinner B; Bartmann C; Stadelmeyer E; Traunwieser E; DeVaney T; Jakse N; Leithner A; Windhager R J Oral Maxillofac Surg; 2012 Oct; 70(10):2309-15. PubMed ID: 21940092 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of human mesenchymal stem cells from gingival connective tissue. Jin SH; Lee JE; Yun JH; Kim I; Ko Y; Park JB J Periodontal Res; 2015 Aug; 50(4):461-7. PubMed ID: 25229614 [TBL] [Abstract][Full Text] [Related]
14. Adenosine metabolism by mesenchymal stromal cells isolated from different human tissues. Galgaro BC; Beckenkamp LR; Naasani LIS; Wink MR Hum Cell; 2023 Nov; 36(6):2247-2258. PubMed ID: 37535223 [TBL] [Abstract][Full Text] [Related]
15. Differentiation of synovial CD-105(+) human mesenchymal stem cells into chondrocyte-like cells through spheroid formation. Arufe MC; De la Fuente A; Fuentes-Boquete I; De Toro FJ; Blanco FJ J Cell Biochem; 2009 Sep; 108(1):145-55. PubMed ID: 19544399 [TBL] [Abstract][Full Text] [Related]
16. Immunosuppressive properties of mesenchymal stromal cell cultures derived from the limbus of human and rabbit corneas. Bray LJ; Heazlewood CF; Munster DJ; Hutmacher DW; Atkinson K; Harkin DG Cytotherapy; 2014 Jan; 16(1):64-73. PubMed ID: 24094499 [TBL] [Abstract][Full Text] [Related]
17. Neurogenic Differentiation of Mesenchymal Stem Cells Induces Alterations in Extracellular Nucleotides Metabolism. Czarnecka J; Porowińska D; Bajek A; Hołysz M; Roszek K J Cell Biochem; 2017 Mar; 118(3):478-486. PubMed ID: 27472650 [TBL] [Abstract][Full Text] [Related]
18. Extracellular purines promote the differentiation of human bone marrow-derived mesenchymal stem cells to the osteogenic and adipogenic lineages. Ciciarello M; Zini R; Rossi L; Salvestrini V; Ferrari D; Manfredini R; Lemoli RM Stem Cells Dev; 2013 Apr; 22(7):1097-111. PubMed ID: 23259837 [TBL] [Abstract][Full Text] [Related]
19. Mesenchymal Stem Cells Ageing: Targeting the "Purinome" to Promote Osteogenic Differentiation and Bone Repair. Noronha-Matos JB; Correia-de-Sá P J Cell Physiol; 2016 Sep; 231(9):1852-61. PubMed ID: 26754327 [TBL] [Abstract][Full Text] [Related]