These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 28120551)
1. Fabrication and characterization of shape memory polyurethane porous scaffold for bone tissue engineering. Yu J; Xia H; Teramoto A; Ni QQ J Biomed Mater Res A; 2017 Apr; 105(4):1132-1137. PubMed ID: 28120551 [TBL] [Abstract][Full Text] [Related]
2. The effect of hydroxyapatite nanoparticles on mechanical behavior and biological performance of porous shape memory polyurethane scaffolds. Yu J; Xia H; Teramoto A; Ni QQ J Biomed Mater Res A; 2018 Jan; 106(1):244-254. PubMed ID: 28880433 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
4. A review: fabrication of porous polyurethane scaffolds. Janik H; Marzec M Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():586-91. PubMed ID: 25579961 [TBL] [Abstract][Full Text] [Related]
5. Indirect three-dimensional printing: A method for fabricating polyurethane-urea based cardiac scaffolds. Hernández-Córdova R; Mathew DA; Balint R; Carrillo-Escalante HJ; Cervantes-Uc JM; Hidalgo-Bastida LA; Hernández-Sánchez F J Biomed Mater Res A; 2016 Aug; 104(8):1912-21. PubMed ID: 26991636 [TBL] [Abstract][Full Text] [Related]
6. 3D biodegradable shape changing composite scaffold with programmable porous structures for bone engineering. Chen X; Huang Z; Yang Q; Zeng X; Bai R; Wang L Biomed Mater; 2022 Nov; 17(6):. PubMed ID: 36394305 [TBL] [Abstract][Full Text] [Related]
7. Assessments for bone regeneration using the polycaprolactone SLUP (salt-leaching using powder) scaffold. Cho YS; Hong MW; Quan M; Kim SY; Lee SH; Lee SJ; Kim YY; Cho YS J Biomed Mater Res A; 2017 Dec; 105(12):3432-3444. PubMed ID: 28879670 [TBL] [Abstract][Full Text] [Related]
8. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles. Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379 [TBL] [Abstract][Full Text] [Related]
9. Systematic characterization of porosity and mass transport and mechanical properties of porous polyurethane scaffolds. Wang YF; Barrera CM; Dauer EA; Gu W; Andreopoulos F; Huang CC J Mech Behav Biomed Mater; 2017 Jan; 65():657-664. PubMed ID: 27741496 [TBL] [Abstract][Full Text] [Related]
10. Influence of hydrodynamic pressure on the proliferation and osteogenic differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds. Tang X; Teng S; Liu C; Jagodzinski M J Biomed Mater Res A; 2017 Dec; 105(12):3445-3455. PubMed ID: 28869710 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and characterization of waterborne biodegradable polyurethanes 3-dimensional porous scaffolds for vascular tissue engineering. Jiang X; Yu F; Wang Z; Li J; Tan H; Ding M; Fu Q J Biomater Sci Polym Ed; 2010; 21(12):1637-52. PubMed ID: 20537246 [TBL] [Abstract][Full Text] [Related]
12. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering. Boissard CI; Bourban PE; Tami AE; Alini M; Eglin D Acta Biomater; 2009 Nov; 5(9):3316-27. PubMed ID: 19442765 [TBL] [Abstract][Full Text] [Related]
13. Repair of critical size bone defects with porous poly(D,L-lactide)/nacre nanocomposite hollow scaffold. Xiao WD; Zhong ZM; Tang YZ; Xu ZX; Xu Z; Chen JT Saudi Med J; 2012 Jun; 33(6):601-7. PubMed ID: 22729113 [TBL] [Abstract][Full Text] [Related]
14. Polyurethane scaffold formation via a combination of salt leaching and thermally induced phase separation. Heijkants RG; van Calck RV; van Tienen TG; de Groot JH; Pennings AJ; Buma P; Veth RP; Schouten AJ J Biomed Mater Res A; 2008 Dec; 87(4):921-32. PubMed ID: 18228268 [TBL] [Abstract][Full Text] [Related]
15. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453 [TBL] [Abstract][Full Text] [Related]
16. Poly(ester-urethane) scaffolds: effect of structure on properties and osteogenic activity of stem cells. Kiziltay A; Marcos-Fernandez A; San Roman J; Sousa RA; Reis RL; Hasirci V; Hasirci N J Tissue Eng Regen Med; 2015 Aug; 9(8):930-42. PubMed ID: 24376070 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of electrospun thermoplastic polyurethane blended poly (l-lactide-co-e-caprolactone) microyarn scaffolds for engineering of female pelvic-floor tissue. Hou M; Wu Q; Dai M; Xu P; Gu C; Jia X; Feng J; Mo X Biomed Mater; 2014 Dec; 10(1):015005. PubMed ID: 25546879 [TBL] [Abstract][Full Text] [Related]
18. A 3D bioprinted in situ conjugated-co-fabricated scaffold for potential bone tissue engineering applications. Sithole MN; Kumar P; du Toit LC; Marimuthu T; Choonara YE; Pillay V J Biomed Mater Res A; 2018 May; 106(5):1311-1321. PubMed ID: 29316290 [TBL] [Abstract][Full Text] [Related]
19. In vitro and in vivo evaluations of 3D porous TCP-coated and non-coated alumina scaffolds. Kim YH; Anirban JM; Song HY; Seo HS; Lee BT J Biomater Appl; 2011 Feb; 25(6):539-58. PubMed ID: 20207781 [TBL] [Abstract][Full Text] [Related]
20. Interactions of coronary artery smooth muscle cells with 3D porous polyurethane scaffolds. Grenier S; Sandig M; Holdsworth DW; Mequanint K J Biomed Mater Res A; 2009 May; 89(2):293-303. PubMed ID: 18431771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]