These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28120813)

  • 1. Control of spontaneous emission of quantum dots using correlated effects of metal oxides and dielectric materials.
    Sadeghi SM; Wing WJ; Gutha RR; Capps L
    Nanotechnology; 2017 Mar; 28(9):095701. PubMed ID: 28120813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiconductor quantum dot super-emitters: spontaneous emission enhancement combined with suppression of defect environment using metal-oxide plasmonic metafilms.
    Sadeghi SM; Wing WJ; Gutha RR; Sharp C
    Nanotechnology; 2018 Jan; 29(1):015402. PubMed ID: 29130899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide.
    Patty K; Sadeghi SM; Nejat A; Mao CB
    Nanotechnology; 2014 Apr; 25(15):155701. PubMed ID: 24642896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Balancing silicon/aluminum oxide junctions for super-plasmonic emission enhancement of quantum dots via plasmonic metafilms.
    Sadeghi SM; Wing WJ; Gutha RR; Wilt JS; Wu JZ
    Nanoscale; 2018 Mar; 10(10):4825-4832. PubMed ID: 29473074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission.
    Wing WJ; Sadeghi SM; Gutha RR; Campbell Q; Mao C
    J Appl Phys; 2015 Sep; 118(12):124302. PubMed ID: 26442574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast emission decay with high emission efficiency of quantum dots in plasmonic-dielectric metasubstrates.
    Wing WJ; Sadeghi SM; Gutha RR
    J Phys Condens Matter; 2017 Jul; 29(29):295301. PubMed ID: 28604367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombination rates for single colloidal quantum dots near a smooth metal film.
    Wu X; Sun Y; Pelton M
    Phys Chem Chem Phys; 2009 Jul; 11(28):5867-70. PubMed ID: 19588005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates.
    Patty K; Sadeghi SM; Campbell Q; Hamilton N; West RG; Mao C
    J Appl Phys; 2014 Sep; 116(11):114301. PubMed ID: 25316953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals.
    Lodahl P; Floris Van Driel A; Nikolaev IS; Irman A; Overgaag K; Vanmaekelbergh D; Vos WL
    Nature; 2004 Aug; 430(7000):654-7. PubMed ID: 15295594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping.
    Rossi A; Tanttu T; Hudson FE; Sun Y; Möttönen M; Dzurak AS
    J Vis Exp; 2015 Jun; (100):e52852. PubMed ID: 26067215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous decay of CdSe/ZnS core-shell quantum dots at the air-dielectric interface.
    Zhu L; Samudrala S; Stelmakh N; Vasilyev M
    Opt Express; 2012 Jan; 20(3):3144-51. PubMed ID: 22330551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots.
    Sadeghi SM; West RG; Nejat A
    Nanotechnology; 2011 Oct; 22(40):405202. PubMed ID: 21896983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrahigh Brightening of Infrared PbS Quantum Dots via Collective Energy Transfer Induced by a Metal-Oxide Plasmonic Metastructure.
    Sadeghi SM; Gutha RR; Hatef A; Goul R; Wu JZ
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11913-11921. PubMed ID: 32083841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors.
    Cho KS; Heo K; Baik CW; Choi JY; Jeong H; Hwang S; Lee SY
    Nat Commun; 2017 Oct; 8(1):840. PubMed ID: 29018190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization and dynamics of long-lived excitations in colloidal semiconductor nanocrystals with dual quantum confinement.
    Liu S; Borys NJ; Sapra S; Eychmüller A; Lupton JM
    Chemphyschem; 2015 Jun; 16(8):1663-9. PubMed ID: 25807918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge-tunnelling and self-trapping: common origins for blinking, grey-state emission and photoluminescence enhancement in semiconductor quantum dots.
    Osborne MA; Fisher AA
    Nanoscale; 2016 Apr; 8(17):9272-83. PubMed ID: 27088542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.