These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28120886)

  • 1. Soft Nanocomposite Based Multi-point, Multi-directional Strain Mapping Sensor Using Anisotropic Electrical Impedance Tomography.
    Lee H; Kwon D; Cho H; Park I; Kim J
    Sci Rep; 2017 Jan; 7():39837. PubMed ID: 28120886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure Insensitive Strain Sensor with Facile Solution-Based Process for Tactile Sensing Applications.
    Oh J; Yang JC; Kim JO; Park H; Kwon SY; Lee S; Sim JY; Oh HW; Kim J; Park S
    ACS Nano; 2018 Aug; 12(8):7546-7553. PubMed ID: 29995382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impedance Sensor for Real-Time Ammonium Detection Based on MWCNT/ZnO Nanocomposites.
    Kumar SKN; Aliyana AK; Baburaj A; Adetunji M; Fernandez RE
    IEEE Trans Nanobioscience; 2023 Jan; 22(1):121-127. PubMed ID: 35404823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent-Free and Cost-Efficient Fabrication of a High-Performance Nanocomposite Sensor for Recording of Electrophysiological Signals.
    Zhuo S; Zhang A; Tessier A; Williams C; Kabiri Ameri S
    Biosensors (Basel); 2024 Apr; 14(4):. PubMed ID: 38667181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft, highly conductive nanotube sponges and composites with controlled compressibility.
    Gui X; Cao A; Wei J; Li H; Jia Y; Li Z; Fan L; Wang K; Zhu H; Wu D
    ACS Nano; 2010 Apr; 4(4):2320-6. PubMed ID: 20361757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-sensitive determination of epinephrine based on TiO2-Au nanoclusters supported on reduced graphene oxide and carbon nanotube hybrid nanocomposites.
    Li J; Wang X; Duan H; Wang Y; Luo C
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():391-398. PubMed ID: 27127069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube/polymer composite electrodes for flexible, attachable electrochemical DNA sensors.
    Li J; Lee EC
    Biosens Bioelectron; 2015 Sep; 71():414-419. PubMed ID: 25950937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosensor based on nanocomposite material for pathogenic virus detection.
    Van Thu V; Dung PT; Tam le T; Tam PD
    Colloids Surf B Biointerfaces; 2014 Mar; 115():176-81. PubMed ID: 24355383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites.
    Amjadi M; Yoon YJ; Park I
    Nanotechnology; 2015 Sep; 26(37):375501. PubMed ID: 26303117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyhydroxyalkanoate/carbon nanotube nanocomposites: flexible electrically conducting elastomers for neural applications.
    Vallejo-Giraldo C; Pugliese E; Larrañaga A; Fernandez-Yague MA; Britton JJ; Trotier A; Tadayyon G; Kelly A; Rago I; Sarasua JR; Dowd E; Quinlan LR; Pandit A; Biggs MJ
    Nanomedicine (Lond); 2016 Oct; 11(19):2547-63. PubMed ID: 27618972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hydrogel-Based Electronic Skin for Touch Detection Using Electrical Impedance Tomography.
    Zhang H; Kalra A; Lowe A; Yu Y; Anand G
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-dependent anisotropic modeling and analysis using mfEIT: A computer simulation study.
    Zhang T; Li R; Potter T; Seo JK; Li G; Zhang Y
    Int J Numer Method Biomed Eng; 2018 Jul; 34(7):e2980. PubMed ID: 29521020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible 3D Force Sensor Based on Polymer Nanocomposite for Soft Robotics and Medical Applications.
    Alotaibi A
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A flexible touch-pressure sensor array with wireless transmission system for robotic skin.
    Huang Y; Fang D; Wu C; Wang W; Guo X; Liu P
    Rev Sci Instrum; 2016 Jun; 87(6):065007. PubMed ID: 27370489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using electrical resistivity tomography to differentiate sapwood from heartwood: application to conifers.
    Guyot A; Ostergaard KT; Lenkopane M; Fan J; Lockington DA
    Tree Physiol; 2013 Feb; 33(2):187-94. PubMed ID: 23329335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a finite-element solution for electrical impedance tomography in an anisotropic medium.
    Abascal JF; Arridge SR; Lionheart WR; Bayford RH; Holder DS
    Physiol Meas; 2007 Jul; 28(7):S129-40. PubMed ID: 17664630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Piezoresistive Tactile Sensor Discriminating Multidirectional Forces.
    Jung Y; Lee DG; Park J; Ko H; Lim H
    Sensors (Basel); 2015 Oct; 15(10):25463-73. PubMed ID: 26445045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bio-hybrid tactile sensor incorporating living artificial skin and an impedance sensing array.
    Cheneler D; Buselli E; Camboni D; Anthony C; Grover L; Adams MJ; Oddo CM
    Sensors (Basel); 2014 Dec; 14(12):23781-802. PubMed ID: 25615726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Deformable Smart Skin for Continuous Sensing Based on Electrical Impedance Tomography.
    Visentin F; Fiorini P; Suzuki K
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27854325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real Time Sensing of Soil Potassium Levels Using Zinc Oxide-Multiwall Carbon Nanotube-Based Sensors.
    Kumar AA; Kumar SKN; Fernandez RE
    IEEE Trans Nanobioscience; 2021 Jan; 20(1):50-56. PubMed ID: 32997633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.