These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28120896)

  • 1. Catalytic behavior of metal catalysts in high-temperature RWGS reaction: In-situ FT-IR experiments and first-principles calculations.
    Choi S; Sang BI; Hong J; Yoon KJ; Son JW; Lee JH; Kim BK; Kim H
    Sci Rep; 2017 Jan; 7():41207. PubMed ID: 28120896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational screening of single-atom doped In
    Wang Y; Li S
    Phys Chem Chem Phys; 2023 Dec; 26(1):381-389. PubMed ID: 38078377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental studies of methanol synthesis from CO(2) hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001).
    Yang Y; Evans J; Rodriguez JA; White MG; Liu P
    Phys Chem Chem Phys; 2010 Sep; 12(33):9909-17. PubMed ID: 20567756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of the catalytic performance of Fe and Cu single-atom catalysts supported on Mo
    Zhang W; Vidal-López A; Comas-Vives A
    Front Chem; 2023; 11():1144189. PubMed ID: 37021146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic manganese oxide nanostructures for the reverse water gas shift reaction.
    He Y; Yang KR; Yu Z; Fishman ZS; Achola LA; Tobin ZM; Heinlein JA; Hu S; Suib SL; Batista VS; Pfefferle LD
    Nanoscale; 2019 Sep; 11(35):16677-16688. PubMed ID: 31461104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K-Promoted Ni-Based Catalysts for Gas-Phase CO
    Gandara-Loe J; Portillo E; Odriozola JA; Reina TR; Pastor-Pérez L
    Front Chem; 2021; 9():785571. PubMed ID: 34869232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ/operando studies for the production of hydrogen through the water-gas shift on metal oxide catalysts.
    Rodriguez JA; Hanson JC; Stacchiola D; Senanayake SD
    Phys Chem Chem Phys; 2013 Aug; 15(29):12004-25. PubMed ID: 23660768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Ni-based catalysts for low-temperature reverse water-gas shift (RWGS) reaction.
    Deng L; Ai X; Xie F; Zhou G
    Chem Asian J; 2021 Apr; 16(8):949-958. PubMed ID: 33646609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Active and Stable Ni/La-Doped Ceria Material for Catalytic CO
    Alvarez-Galvan C; Lustemberg PG; Oropeza FE; Bachiller-Baeza B; Dapena Ospina M; Herranz M; Cebollada J; Collado L; Campos-Martin JM; de la Peña-O'Shea VA; Alonso JA; Ganduglia-Pirovano MV
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):50739-50750. PubMed ID: 36321841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong Metal-Support Interactions between Copper and Iron Oxide during the High-Temperature Water-Gas Shift Reaction.
    Zhu M; Tian P; Kurtz R; Lunkenbein T; Xu J; Schlögl R; Wachs IE; Han YF
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):9083-9087. PubMed ID: 31074080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Dispersion of Palladium on TiO
    Nelson NC; Chen L; Meira D; Kovarik L; Szanyi J
    Angew Chem Int Ed Engl; 2020 Sep; 59(40):17657-17663. PubMed ID: 32589820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth.
    Wang X; Yuan Q; Li J; Ding F
    Nanoscale; 2017 Aug; 9(32):11584-11589. PubMed ID: 28770913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-free Catalyst B
    Tang M; Shen H; Xie H; Sun Q
    Chemphyschem; 2020 Apr; 21(8):779-784. PubMed ID: 32141668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism.
    Burch R
    Phys Chem Chem Phys; 2006 Dec; 8(47):5483-500. PubMed ID: 17136264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Full-Temperature-Range RWGS Catalysts: Impact of Alkali Promoters on Ni/CeO
    Gandara-Loe J; Zhang Q; Villora-Picó JJ; Sepúlveda-Escribano A; Pastor-Pérez L; Ramirez Reina T
    Energy Fuels; 2022 Jun; 36(12):6362-6373. PubMed ID: 36848300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of Ni-Ag/SiO2 catalysts prepared by reduction in aqueous hydrazine.
    Wojcieszak R; Monteverdi S; Ghanbaja J; Bettahar MM
    J Colloid Interface Sci; 2008 Jan; 317(1):166-74. PubMed ID: 17927996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of methanol from CO
    Tang Q; Shen Z; Huang L; He T; Adidharma H; Russell AG; Fan M
    Phys Chem Chem Phys; 2017 Jul; 19(28):18539-18555. PubMed ID: 28685170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ni Single Atom Catalysts for CO
    Millet MM; Algara-Siller G; Wrabetz S; Mazheika A; Girgsdies F; Teschner D; Seitz F; Tarasov A; Levchenko SV; Schlögl R; Frei E
    J Am Chem Soc; 2019 Feb; 141(6):2451-2461. PubMed ID: 30640467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.