These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28121223)

  • 1. Using tuberous sclerosis complex to understand the impact of MTORC1 signaling on mitochondrial dynamics and mitophagy in neurons.
    Ebrahimi-Fakhari D; Saffari A; Wahlster L; Sahin M
    Autophagy; 2017 Apr; 13(4):754-756. PubMed ID: 28121223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired Mitochondrial Dynamics and Mitophagy in Neuronal Models of Tuberous Sclerosis Complex.
    Ebrahimi-Fakhari D; Saffari A; Wahlster L; Di Nardo A; Turner D; Lewis TL; Conrad C; Rothberg JM; Lipton JO; Kölker S; Hoffmann GF; Han MJ; Polleux F; Sahin M
    Cell Rep; 2016 Oct; 17(4):1053-1070. PubMed ID: 27760312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MTORC1 Regulates both General Autophagy and Mitophagy Induction after Oxidative Phosphorylation Uncoupling.
    Bartolomé A; García-Aguilar A; Asahara SI; Kido Y; Guillén C; Pajvani UB; Benito M
    Mol Cell Biol; 2017 Dec; 37(23):. PubMed ID: 28894028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mTOR Signaling and Neural Stem Cells: The Tuberous Sclerosis Complex Model.
    Polchi A; Magini A; Meo DD; Tancini B; Emiliani C
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29772672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raptor downregulation rescues neuronal phenotypes in mouse models of Tuberous Sclerosis Complex.
    Karalis V; Caval-Holme F; Bateup HS
    Nat Commun; 2022 Aug; 13(1):4665. PubMed ID: 35945201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian target of rapamycin and tuberous sclerosis complex.
    Wataya-Kaneda M
    J Dermatol Sci; 2015 Aug; 79(2):93-100. PubMed ID: 26051878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuberous sclerosis--A model for tumour growth.
    Dodd KM; Dunlop EA
    Semin Cell Dev Biol; 2016 Apr; 52():3-11. PubMed ID: 26816112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current Approaches and Future Directions for the Treatment of mTORopathies.
    Karalis V; Bateup HS
    Dev Neurosci; 2021; 43(3-4):143-158. PubMed ID: 33910214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mTORC1 Couples Nucleotide Synthesis to Nucleotide Demand Resulting in a Targetable Metabolic Vulnerability.
    Valvezan AJ; Turner M; Belaid A; Lam HC; Miller SK; McNamara MC; Baglini C; Housden BE; Perrimon N; Kwiatkowski DJ; Asara JM; Henske EP; Manning BD
    Cancer Cell; 2017 Nov; 32(5):624-638.e5. PubMed ID: 29056426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pancreatic β cells overexpressing hIAPP impaired mitophagy and unbalanced mitochondrial dynamics.
    Hernández MG; Aguilar AG; Burillo J; Oca RG; Manca MA; Novials A; Alcarraz-Vizan G; Guillén C; Benito M
    Cell Death Dis; 2018 May; 9(5):481. PubMed ID: 29705815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel lysosome-to-mitochondria signaling pathway disrupted by amyloid-β oligomers.
    Norambuena A; Wallrabe H; Cao R; Wang DB; Silva A; Svindrych Z; Periasamy A; Hu S; Tanzi RE; Kim DY; Bloom GS
    EMBO J; 2018 Nov; 37(22):. PubMed ID: 30348864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic Screen with TSC-Deficient Neurons Reveals Heat-Shock Machinery as a Druggable Pathway for mTORC1 and Reduced Cilia.
    Di Nardo A; Lenoël I; Winden KD; Rühmkorf A; Modi ME; Barrett L; Ercan-Herbst E; Venugopal P; Behne R; Lopes CAM; Kleiman RJ; Bettencourt-Dias M; Sahin M
    Cell Rep; 2020 Jun; 31(12):107780. PubMed ID: 32579942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex Neurological Phenotype in Mutant Mice Lacking Tsc2 in Excitatory Neurons of the Developing Forebrain(123).
    Crowell B; Lee GH; Nikolaeva I; Dal Pozzo V; D'Arcangelo G
    eNeuro; 2015; 2(6):. PubMed ID: 26693177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mTORC1-mediated downregulation of COX2 restrains tumor growth caused by TSC2 deficiency.
    Li H; Jin F; Jiang K; Ji S; Wang L; Ni Z; Chen X; Hu Z; Zhang H; Liu Y; Qin Y; Zha X
    Oncotarget; 2016 May; 7(19):28435-47. PubMed ID: 27078846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GSK-3-TSC axis governs lysosomal acidification through autophagy and endocytic pathways.
    Avrahami L; Paz R; Dominko K; Hecimovic S; Bucci C; Eldar-Finkelman H
    Cell Signal; 2020 Jul; 71():109597. PubMed ID: 32173369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperactivation of mTORC1 disrupts cellular homeostasis in cerebellar Purkinje cells.
    Sakai Y; Kassai H; Nakayama H; Fukaya M; Maeda T; Nakao K; Hashimoto K; Sakagami H; Kano M; Aiba A
    Sci Rep; 2019 Feb; 9(1):2799. PubMed ID: 30808980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genetic model to dissect the role of Tsc-mTORC1 in neuronal cultures.
    Nie D; Sahin M
    Methods Mol Biol; 2012; 821():393-405. PubMed ID: 22125080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arginase-II activates mTORC1 through myosin-1b in vascular cell senescence and apoptosis.
    Yu Y; Xiong Y; Montani JP; Yang Z; Ming XF
    Cell Death Dis; 2018 Feb; 9(3):313. PubMed ID: 29472548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of ERK1/2 Restores GSK3β Activity and Protein Synthesis Levels in a Model of Tuberous Sclerosis.
    Pal R; Bondar VV; Adamski CJ; Rodney GG; Sardiello M
    Sci Rep; 2017 Jun; 7(1):4174. PubMed ID: 28646232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autophagic lipid metabolism sustains mTORC1 activity in TSC-deficient neural stem cells.
    Wang C; Haas MA; Yang F; Yeo S; Okamoto T; Chen S; Wen J; Sarma P; Plas DR; Guan JL
    Nat Metab; 2019 Nov; 1(11):1127-1140. PubMed ID: 32577608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.