BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 28121247)

  • 1. Targeting iNOS to increase efficacy of immunotherapies.
    Ekmekcioglu S; Grimm EA; Roszik J
    Hum Vaccin Immunother; 2017 May; 13(5):1105-1108. PubMed ID: 28121247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunotherapy: enhancing the efficacy of this promising therapeutic in multiple cancers.
    Inthagard J; Edwards J; Roseweir AK
    Clin Sci (Lond); 2019 Jan; 133(2):181-193. PubMed ID: 30659159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging trends in the immunotherapy of pancreatic cancer.
    Banerjee K; Kumar S; Ross KA; Gautam S; Poelaert B; Nasser MW; Aithal A; Bhatia R; Wannemuehler MJ; Narasimhan B; Solheim JC; Batra SK; Jain M
    Cancer Lett; 2018 Mar; 417():35-46. PubMed ID: 29242097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reprogramming Tumor Blood Vessels for Enhancing Immunotherapy.
    Schmittnaegel M; De Palma M
    Trends Cancer; 2017 Dec; 3(12):809-812. PubMed ID: 29198436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Downregulation of Nitric Oxide Collaborated with Radiotherapy to Promote Anti-Tumor Immune Response via Inducing CD8+ T Cell Infiltration.
    Xu J; Luo Y; Yuan C; Han L; Wu Q; Xu L; Gao Y; Sun Y; Ma S; Tang G; Li S; Sun W; Gong Y; Xie C
    Int J Biol Sci; 2020; 16(9):1563-1574. PubMed ID: 32226302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Next Hurdle in Cancer Immunotherapy: Overcoming the Non-T-Cell-Inflamed Tumor Microenvironment.
    Gajewski TF
    Semin Oncol; 2015 Aug; 42(4):663-71. PubMed ID: 26320069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies.
    Kato D; Yaguchi T; Iwata T; Morii K; Nakagawa T; Nishimura R; Kawakami Y
    Nihon Rinsho Meneki Gakkai Kaishi; 2017; 40(1):68-77. PubMed ID: 28539557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancer-induced heterogeneous immunosuppressive tumor microenvironments and their personalized modulation.
    Yaguchi T; Kawakami Y
    Int Immunol; 2016 Aug; 28(8):393-9. PubMed ID: 27401477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting galectins in T cell-based immunotherapy within tumor microenvironment.
    Jin QY; Li YS; Qiao XH; Yang JW; Guo XL
    Life Sci; 2021 Jul; 277():119426. PubMed ID: 33785342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor and Host Factors Controlling Antitumor Immunity and Efficacy of Cancer Immunotherapy.
    Spranger S; Sivan A; Corrales L; Gajewski TF
    Adv Immunol; 2016; 130():75-93. PubMed ID: 26923000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells.
    Foy SP; Mandl SJ; dela Cruz T; Cote JJ; Gordon EJ; Trent E; Delcayre A; Breitmeyer J; Franzusoff A; Rountree RB
    Cancer Immunol Immunother; 2016 May; 65(5):537-49. PubMed ID: 26961085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing T cell therapy by overcoming the immunosuppressive tumor microenvironment.
    Arina A; Corrales L; Bronte V
    Semin Immunol; 2016 Feb; 28(1):54-63. PubMed ID: 26872631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevailing over T cell exhaustion: New developments in the immunotherapy of pancreatic cancer.
    Bauer C; Kühnemuth B; Duewell P; Ormanns S; Gress T; Schnurr M
    Cancer Lett; 2016 Oct; 381(1):259-68. PubMed ID: 26968250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of iNOS activity enhances the anti-tumor effects of alpha-galactosylceramide in established murine cancer model.
    Ito H; Ando T; Seishima M
    Oncotarget; 2015 Dec; 6(39):41863-74. PubMed ID: 26496031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immune suppressive mechanisms in the tumor microenvironment.
    Munn DH; Bronte V
    Curr Opin Immunol; 2016 Apr; 39():1-6. PubMed ID: 26609943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancer immunoediting and resistance to T cell-based immunotherapy.
    O'Donnell JS; Teng MWL; Smyth MJ
    Nat Rev Clin Oncol; 2019 Mar; 16(3):151-167. PubMed ID: 30523282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoengineered Immune Niches for Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer Immunotherapy.
    Phuengkham H; Ren L; Shin IW; Lim YT
    Adv Mater; 2019 Aug; 31(34):e1803322. PubMed ID: 30773696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innate Immune Cells and Their Contribution to T-Cell-Based Immunotherapy.
    Ginefra P; Lorusso G; Vannini N
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32580431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing tumor T cell infiltration to enable cancer immunotherapy.
    Zhang J; Endres S; Kobold S
    Immunotherapy; 2019 Feb; 11(3):201-213. PubMed ID: 30730277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunotherapy of Pediatric Solid Tumors: Treatments at a Crossroads, with an Emphasis on Antibodies.
    Casey DL; Cheung NV
    Cancer Immunol Res; 2020 Feb; 8(2):161-166. PubMed ID: 32015013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.