These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28121422)

  • 21. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Au-Rh and Au-Pd nanocatalysts supported on rutile titania nanorods: structure and chemical stability.
    Konuspayeva Z; Afanasiev P; Nguyen TS; Di Felice L; Morfin F; Nguyen NT; Nelayah J; Ricolleau C; Li ZY; Yuan J; Berhault G; Piccolo L
    Phys Chem Chem Phys; 2015 Nov; 17(42):28112-20. PubMed ID: 25765742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition.
    He Y; Liu JC; Luo L; Wang YG; Zhu J; Du Y; Li J; Mao SX; Wang C
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7700-7705. PubMed ID: 29987052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geometric and electronic characteristics of active sites on TiO2-supported Au nano-catalysts: insights from first principles.
    Laursen S; Linic S
    Phys Chem Chem Phys; 2009 Dec; 11(46):11006-12. PubMed ID: 19924336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wet-Chemistry Strong Metal-Support Interactions in Titania-Supported Au Catalysts.
    Zhang J; Wang H; Wang L; Ali S; Wang C; Wang L; Meng X; Li B; Su DS; Xiao FS
    J Am Chem Soc; 2019 Feb; 141(7):2975-2983. PubMed ID: 30677301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transition metal atoms pathways on rutile TiO2 (110) surface: distribution of Ti3+ states and evidence of enhanced peripheral charge accumulation.
    Cai Y; Bai Z; Chintalapati S; Zeng Q; Feng YP
    J Chem Phys; 2013 Apr; 138(15):154711. PubMed ID: 23614440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Charge transfer effects on the chemical reactivity of Pd(x)Cu(1-x) nanoalloys.
    Castegnaro MV; Gorgeski A; Balke B; Alves MC; Morais J
    Nanoscale; 2016 Jan; 8(1):641-7. PubMed ID: 26647173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ spectroscopy of complex surface reactions on supported Pd-Zn, Pd-Ga, and Pd(Pt)-Cu nanoparticles.
    Föttinger K; Rupprechter G
    Acc Chem Res; 2014 Oct; 47(10):3071-9. PubMed ID: 25247260
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visible-Light Acceleration of H
    Kang N; Wang Q; Djeda R; Wang W; Fu F; Moro MM; Ramirez MLA; Moya S; Coy E; Salmon L; Pozzo JL; Astruc D
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):53816-53826. PubMed ID: 33201661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defect Effects on TiO
    Wan J; Chen W; Jia C; Zheng L; Dong J; Zheng X; Wang Y; Yan W; Chen C; Peng Q; Wang D; Li Y
    Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29363197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ab Initio Study of the Atomic Level Structure of the Rutile TiO
    Gutiérrez Moreno JJ; Nolan M
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):38089-38100. PubMed ID: 28937740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au-Pd nanoparticles.
    Su R; Tiruvalam R; He Q; Dimitratos N; Kesavan L; Hammond C; Lopez-Sanchez JA; Bechstein R; Kiely CJ; Hutchings GJ; Besenbacher F
    ACS Nano; 2012 Jul; 6(7):6284-92. PubMed ID: 22663086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. N-Doped graphene-supported PdCu nanoalloy as efficient catalyst for reducing Cr(vi) by formic acid.
    Li S; Liu L; Zhao Q; He C; Liu W
    Phys Chem Chem Phys; 2018 Jan; 20(5):3457-3464. PubMed ID: 29334086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective hydrogen production from formic acid decomposition on Pd-Au bimetallic surfaces.
    Yu WY; Mullen GM; Flaherty DW; Mullins CB
    J Am Chem Soc; 2014 Aug; 136(31):11070-8. PubMed ID: 25019609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crossover among structural motifs in Pd-Au nanoalloys.
    Zhu B; Guesmi H; Creuze J; Legrand B; Mottet C
    Phys Chem Chem Phys; 2015 Nov; 17(42):28129-36. PubMed ID: 25773011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manipulating the charge state of Au clusters on rutile TiO2(110) single crystal surfaces through molecular reactions probed by infrared spectroscopy.
    Cao Y; Hu S; Yu M; Wang T; Huang S; Yan S; Xu M
    Phys Chem Chem Phys; 2016 Jul; 18(26):17660-5. PubMed ID: 27306113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The activation of gold and the water-gas shift reaction: insights from studies with model catalysts.
    Rodriguez JA; Senanayake SD; Stacchiola D; Liu P; Hrbek J
    Acc Chem Res; 2014 Mar; 47(3):773-82. PubMed ID: 24191672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic analysis of the reduction of 4-nitrophenol catalyzed by Au/Pd nanoalloys immobilized in spherical polyelectrolyte brushes.
    Gu S; Lu Y; Kaiser J; Albrecht M; Ballauff M
    Phys Chem Chem Phys; 2015 Nov; 17(42):28137-43. PubMed ID: 25790094
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Au and Pd atoms adsorbed on pure and Ti-doped SiO2/Mo(112) films.
    Giordano L; Del Vitto A; Pacchioni G
    J Chem Phys; 2006 Jan; 124(3):034701. PubMed ID: 16438594
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new application of photocatalysts: synthesis of nano-sized metal and alloy catalysts by a photo-assisted deposition method.
    Mori K; Araki T; Takasaki T; Shironita S; Yamashita H
    Photochem Photobiol Sci; 2009 May; 8(5):652-6. PubMed ID: 19424538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.