BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28121427)

  • 1. Riboswitch-Based Reversible Dual Color Sensor.
    Harbaugh SV; Goodson MS; Dillon K; Zabarnick S; Kelley-Loughnane N
    ACS Synth Biol; 2017 May; 6(5):766-781. PubMed ID: 28121427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening and selection of artificial riboswitches.
    Harbaugh SV; Martin JA; Weinstein J; Ingram G; Kelley-Loughnane N
    Methods; 2018 Jul; 143():77-89. PubMed ID: 29778645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of synthetic riboswitch in cell-free protein expression systems.
    Chushak Y; Harbaugh S; Zimlich K; Alfred B; Chávez J; Kelley-Loughnane N
    RNA Biol; 2021 Nov; 18(11):1727-1738. PubMed ID: 33427029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplifying Riboswitch Signal Output Using Cellular Wiring.
    Goodson MS; Bennett AC; Jennewine BR; Briskin E; Harbaugh SV; Kelley-Loughnane N
    ACS Synth Biol; 2017 Aug; 6(8):1440-1444. PubMed ID: 28430408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures.
    Xiu Y; Jang S; Jones JA; Zill NA; Linhardt RJ; Yuan Q; Jung GY; Koffas MAG
    Biotechnol Bioeng; 2017 Oct; 114(10):2235-2244. PubMed ID: 28543037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Theophylline-Responsive Riboswitch Regulates Expression of Nuclear-Encoded Genes.
    Shanidze N; Lenkeit F; Hartig JS; Funck D
    Plant Physiol; 2020 Jan; 182(1):123-135. PubMed ID: 31704721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design criteria for synthetic riboswitches acting on transcription.
    Wachsmuth M; Domin G; Lorenz R; Serfling R; Findeiß S; Stadler PF; Mörl M
    RNA Biol; 2015; 12(2):221-31. PubMed ID: 25826571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HbiF regulates type 1 fimbriation independently of FimB and FimE.
    Xie Y; Yao Y; Kolisnychenko V; Teng CH; Kim KS
    Infect Immun; 2006 Jul; 74(7):4039-47. PubMed ID: 16790777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FRET-based optical assay for monitoring riboswitch activation.
    Harbaugh S; Kelley-Loughnane N; Davidson M; Narayanan L; Trott S; Chushak YG; Stone MO
    Biomacromolecules; 2009 May; 10(5):1055-60. PubMed ID: 19358526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro analysis of riboswitch-Spinach aptamer fusions as metabolite-sensing fluorescent biosensors.
    Kellenberger CA; Hammond MC
    Methods Enzymol; 2015; 550():147-72. PubMed ID: 25605385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a natural triple-tandem c-di-GMP riboswitch and application of the riboswitch-based dual-fluorescence reporter.
    Zhou H; Zheng C; Su J; Chen B; Fu Y; Xie Y; Tang Q; Chou SH; He J
    Sci Rep; 2016 Feb; 6():20871. PubMed ID: 26892868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of intragenic synthetic riboswitches for detection of a small molecule.
    Jo JJ; Shin JS
    Biotechnol Lett; 2009 Oct; 31(10):1577-81. PubMed ID: 19547922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic Comparison and Rational Design of Theophylline Riboswitches for Effective Gene Repression.
    Wang X; Fang C; Wang Y; Shi X; Yu F; Xiong J; Chou SH; He J
    Microbiol Spectr; 2023 Feb; 11(1):e0275222. PubMed ID: 36688639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Artificial Riboswitches for Monitoring of Naringenin In Vivo.
    Jang S; Jang S; Xiu Y; Kang TJ; Lee SH; Koffas MAG; Jung GY
    ACS Synth Biol; 2017 Nov; 6(11):2077-2085. PubMed ID: 28749656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Riboswitches in Vivo Using Dual Genetic Selection and Fluorescence-Activated Cell Sorting.
    Page K; Shaffer J; Lin S; Zhang M; Liu JM
    ACS Synth Biol; 2018 Sep; 7(9):2000-2006. PubMed ID: 30119599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unexpected versatility in bacterial riboswitches.
    Mellin JR; Cossart P
    Trends Genet; 2015 Mar; 31(3):150-6. PubMed ID: 25708284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and characterization of a glycine biosensor system for fine-tuned metabolic regulation in Escherichia coli.
    Hong KQ; Zhang J; Jin B; Chen T; Wang ZW
    Microb Cell Fact; 2022 Apr; 21(1):56. PubMed ID: 35392910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent riboswitch-controlled biosensors for the genome scale analysis of metabolic pathways.
    Michaud A; Garneau D; Côté JP; Lafontaine DA
    Sci Rep; 2024 May; 14(1):12555. PubMed ID: 38821978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering an inducible gene expression system for Bacillus subtilis from a strong constitutive promoter and a theophylline-activated synthetic riboswitch.
    Cui W; Han L; Cheng J; Liu Z; Zhou L; Guo J; Zhou Z
    Microb Cell Fact; 2016 Nov; 15(1):199. PubMed ID: 27876054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditional control of gene expression by synthetic riboswitches in Streptomyces coelicolor.
    Rudolph MM; Vockenhuber MP; Suess B
    Methods Enzymol; 2015; 550():283-99. PubMed ID: 25605391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.