These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 28121447)

  • 1. Kinetic Accessibility of Porous Material Adsorption Sites Studied through the Lattice Boltzmann Method.
    Vanson JM; Coudert FX; Klotz M; Boutin A
    Langmuir; 2017 Feb; 33(6):1405-1411. PubMed ID: 28121447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport and adsorption under liquid flow: the role of pore geometry.
    Vanson JM; Boutin A; Klotz M; Coudert FX
    Soft Matter; 2017 Jan; 13(4):875-885. PubMed ID: 28074205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unexpected coupling between flow and adsorption in porous media.
    Vanson JM; Coudert FX; Rotenberg B; Levesque M; Tardivat C; Klotz M; Boutin A
    Soft Matter; 2015 Aug; 11(30):6125-33. PubMed ID: 26139013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accounting for adsorption and desorption in lattice Boltzmann simulations.
    Levesque M; Duvail M; Pagonabarraga I; Frenkel D; Rotenberg B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013308. PubMed ID: 23944584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption, structure and dynamics of benzene in ordered and disordered porous carbons.
    Coasne B; Alba-Simionesco C; Audonnet F; Dosseh G; Gubbins KE
    Phys Chem Chem Phys; 2011 Mar; 13(9):3748-57. PubMed ID: 21173972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice Boltzmann method for adsorption under stationary and transient conditions: Interplay between transport and adsorption kinetics in porous media.
    Zaafouri Z; Batôt G; Nieto-Draghi C; Rotenberg B; Bauer D; Coasne B
    Phys Rev E; 2021 Jul; 104(1-2):015314. PubMed ID: 34412268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding adsorption and desorption processes in mesoporous materials with independent disordered channels.
    Naumov S; Valiullin R; Kärger J; Monson PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031607. PubMed ID: 19905123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical analysis of electroosmotic flow in dense regular and random arrays of impermeable, nonconducting spheres.
    Hlushkou D; Seidel-Morgenstern A; Tallarek U
    Langmuir; 2005 Jun; 21(13):6097-112. PubMed ID: 15952866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media.
    Zhou L; Qu ZG; Ding T; Miao JY
    Phys Rev E; 2016 Apr; 93():043101. PubMed ID: 27176384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical investigation of the effects of porosity and tortuosity on soil permeability using coupled three-dimensional discrete-element method and lattice Boltzmann method.
    Sheikh B; Pak A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053301. PubMed ID: 26066273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SHIFT: an implementation for lattice Boltzmann simulation in low-porosity porous media.
    Ma J; Wu K; Jiang Z; Couples GD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056702. PubMed ID: 20866349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice model of adsorption in disordered porous materials: mean-field density functional theory and Monte Carlo simulations.
    Sarkisov L; Monson PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):011202. PubMed ID: 11800685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benefits and limitations of porous substrates as biosensors for protein adsorption.
    Lazzara TD; Mey I; Steinem C; Janshoff A
    Anal Chem; 2011 Jul; 83(14):5624-30. PubMed ID: 21651041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of dissolution in porous media in three dimensions with lattice Boltzmann, finite-volume, and surface-rescaling methods.
    Gray F; Cen J; Boek ES
    Phys Rev E; 2016 Oct; 94(4-1):043320. PubMed ID: 27841520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mean field kinetic theory for a lattice gas model of fluids confined in porous materials.
    Monson PA
    J Chem Phys; 2008 Feb; 128(8):084701. PubMed ID: 18315066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption Hysteresis in Porous Solids.
    Donohue MD; Aranovich GL
    J Colloid Interface Sci; 1998 Sep; 205(1):121-30. PubMed ID: 9710505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of the kinetic boundary condition on porous media flow in the lattice Boltzmann formulation.
    Singh S; Jiang F; Tsuji T
    Phys Rev E; 2017 Jul; 96(1-1):013303. PubMed ID: 29347122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-volume method with lattice Boltzmann flux scheme for incompressible porous media flow at the representative-elementary-volume scale.
    Hu Y; Li D; Shu S; Niu X
    Phys Rev E; 2016 Feb; 93(2):023308. PubMed ID: 26986440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meshless lattice Boltzmann method for the simulation of fluid flows.
    Musavi SH; Ashrafizaadeh M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023310. PubMed ID: 25768638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods.
    Huang X; Zhou W; Deng D
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.