These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28121808)

  • 1. Perceived exertion during muscle fatigue as reflected in movement-related cortical potentials: an event-related potential study.
    Guo F; Sun YJ; Zhang RH
    Neuroreport; 2017 Feb; 28(3):115-122. PubMed ID: 28121808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Movement-related cortical potentials during muscle fatigue induced by upper limb submaximal isometric contractions.
    Guo F; Wang JY; Sun YJ; Yang AL; Zhang RH
    Neuroreport; 2014 Oct; 25(14):1136-43. PubMed ID: 25089802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perception of effort reflects central motor command during movement execution.
    de Morree HM; Klein C; Marcora SM
    Psychophysiology; 2012 Sep; 49(9):1242-53. PubMed ID: 22725828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Movement-related cortical potentials associated with progressive muscle fatigue in a grasping task.
    Johnston J; Rearick M; Slobounov S
    Clin Neurophysiol; 2001 Jan; 112(1):68-77. PubMed ID: 11137663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain source imaging based on movement-related cortical potentials induced by fatigue during self-paced handgrip contractions.
    Guo F; Zhang T; Hanson NJ; Zhang R
    Neuroreport; 2020 Mar; 31(4):300-304. PubMed ID: 31895748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological characteristics of motor units in the brachioradialis muscle across fatiguing low-level isometric contractions.
    Calder KM; Stashuk DW; McLean L
    J Electromyogr Kinesiol; 2008 Feb; 18(1):2-15. PubMed ID: 17113787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The neurophysiology of central and peripheral fatigue during sub-maximal lower limb isometric contractions.
    Berchicci M; Menotti F; Macaluso A; Di Russo F
    Front Hum Neurosci; 2013; 7():135. PubMed ID: 23596408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue in a simple repetitive motor task: a combined electrophysiological and neuropsychological study.
    Dirnberger G; Duregger C; Trettler E; Lindinger G; Lang W
    Brain Res; 2004 Nov; 1028(1):26-30. PubMed ID: 15518638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes of motor drive, cortical arousal and perceived exertion following prolonged cycling to exhaustion.
    Presland JD; Dowson MN; Cairns SP
    Eur J Appl Physiol; 2005 Sep; 95(1):42-51. PubMed ID: 15976997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disrupting the supplementary motor area makes physical effort appear less effortful.
    Zénon A; Sidibé M; Olivier E
    J Neurosci; 2015 Jun; 35(23):8737-44. PubMed ID: 26063908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitation of cortically evoked potentials with motor imagery during post-exercise depression of corticospinal excitability.
    Pitcher JB; Robertson AL; Clover EC; Jaberzadeh S
    Exp Brain Res; 2005 Jan; 160(4):409-17. PubMed ID: 15502993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical substrates of the effects of caffeine and time-on-task on perception of effort.
    de Morree HM; Klein C; Marcora SM
    J Appl Physiol (1985); 2014 Dec; 117(12):1514-23. PubMed ID: 25342703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perceived exertion is elevated in old age during an isometric fatigue task.
    Allman BL; Rice CL
    Eur J Appl Physiol; 2003 Apr; 89(2):191-7. PubMed ID: 12665984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the prefrontal cortex in the development of muscle fatigue in Charcot-Marie-Tooth 1A patients.
    Menotti F; Berchicci M; Di Russo F; Damiani A; Vitelli S; Macaluso A
    Neuromuscul Disord; 2014 Jun; 24(6):516-23. PubMed ID: 24792521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low mean level sustained and intermittent grip exertions: influence of age on fatigue and recovery.
    Adamo DE; Khodaee M; Barringer S; Johnson PW; Martin BJ
    Ergonomics; 2009 Oct; 52(10):1287-97. PubMed ID: 19662553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of transient vascular occlusion of the upper arm on motor evoked potentials during force exertion.
    Takarada Y; Ohki Y; Taira M
    Neurosci Res; 2013 Aug; 76(4):224-9. PubMed ID: 23806753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue.
    Hunter SK; McNeil CJ; Butler JE; Gandevia SC; Taylor JL
    Exp Brain Res; 2016 Sep; 234(9):2541-51. PubMed ID: 27165508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor-unit activity differs with load type during a fatiguing contraction.
    Mottram CJ; Jakobi JM; Semmler JG; Enoka RM
    J Neurophysiol; 2005 Mar; 93(3):1381-92. PubMed ID: 15483059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-interval cortical inhibition and corticomotor excitability with fatiguing hand exercise: a central adaptation to fatigue?
    Benwell NM; Sacco P; Hammond GR; Byrnes ML; Mastaglia FL; Thickbroom GW
    Exp Brain Res; 2006 Apr; 170(2):191-8. PubMed ID: 16328285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supraspinal fatigue is similar in men and women for a low-force fatiguing contraction.
    Keller ML; Pruse J; Yoon T; Schlinder-Delap B; Harkins A; Hunter SK
    Med Sci Sports Exerc; 2011 Oct; 43(10):1873-83. PubMed ID: 21364478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.