These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 28122143)
1. Metabolic robustness in young roots underpins a predictive model of maize hybrid performance in the field. de Abreu E Lima F; Westhues M; Cuadros-Inostroza Á; Willmitzer L; Melchinger AE; Nikoloski Z Plant J; 2017 Apr; 90(2):319-329. PubMed ID: 28122143 [TBL] [Abstract][Full Text] [Related]
2. Classification-driven framework to predict maize hybrid field performance from metabolic profiles of young parental roots. de Abreu E Lima F; Willmitzer L; Nikoloski Z PLoS One; 2018; 13(4):e0196038. PubMed ID: 29698533 [TBL] [Abstract][Full Text] [Related]
3. Deducing hybrid performance from parental metabolic profiles of young primary roots of maize by using a multivariate diallel approach. Feher K; Lisec J; Römisch-Margl L; Selbig J; Gierl A; Piepho HP; Nikoloski Z; Willmitzer L PLoS One; 2014; 9(1):e85435. PubMed ID: 24409329 [TBL] [Abstract][Full Text] [Related]
4. Metabolite Profiles of Maize Leaves in Drought, Heat, and Combined Stress Field Trials Reveal the Relationship between Metabolism and Grain Yield. Obata T; Witt S; Lisec J; Palacios-Rojas N; Florez-Sarasa I; Yousfi S; Araus JL; Cairns JE; Fernie AR Plant Physiol; 2015 Dec; 169(4):2665-83. PubMed ID: 26424159 [TBL] [Abstract][Full Text] [Related]
6. Metabolite profiling and genome-wide association studies reveal response mechanisms of phosphorus deficiency in maize seedling. Luo B; Ma P; Nie Z; Zhang X; He X; Ding X; Feng X; Lu Q; Ren Z; Lin H; Wu Y; Shen Y; Zhang S; Wu L; Liu D; Pan G; Rong T; Gao S Plant J; 2019 Mar; 97(5):947-969. PubMed ID: 30472798 [TBL] [Abstract][Full Text] [Related]
7. Analysis of nonadditive protein accumulation in young primary roots of a maize (Zea mays L.) F(1)-hybrid compared to its parental inbred lines. Hoecker N; Lamkemeyer T; Sarholz B; Paschold A; Fladerer C; Madlung J; Wurster K; Stahl M; Piepho HP; Nordheim A; Hochholdinger F Proteomics; 2008 Sep; 8(18):3882-94. PubMed ID: 18704907 [TBL] [Abstract][Full Text] [Related]
8. Dissecting Heterosis During the Ear Inflorescence Development Stage in Maize via a Metabolomics-based Analysis. Shi X; Zhang X; Shi D; Zhang X; Li W; Tang J Sci Rep; 2019 Jan; 9(1):212. PubMed ID: 30659214 [TBL] [Abstract][Full Text] [Related]
9. Metabolic contribution to salt stress in two maize hybrids with contrasting resistance. Richter JA; Erban A; Kopka J; Zörb C Plant Sci; 2015 Apr; 233():107-115. PubMed ID: 25711818 [TBL] [Abstract][Full Text] [Related]
10. Metabotyping of 30 maize hybrids under early-sowing conditions reveals potential marker-metabolites for breeding. Lamari N; Zhendre V; Urrutia M; Bernillon S; Maucourt M; Deborde C; Prodhomme D; Jacob D; Ballias P; Rolin D; Sellier H; Rabier D; Gibon Y; Giauffret C; Moing A Metabolomics; 2018 Sep; 14(10):132. PubMed ID: 30830438 [TBL] [Abstract][Full Text] [Related]
11. Improved photosynthetic characteristics correlated with enhanced biomass in a heterotic F Meena RK; Reddy KS; Gautam R; Maddela S; Reddy AR; Gudipalli P Photosynth Res; 2021 Mar; 147(3):253-267. PubMed ID: 33555518 [TBL] [Abstract][Full Text] [Related]
12. Grouping of tropical mid-altitude maize inbred lines on the basis of yield data and molecular markers. Menkir A; Melake-Berhan A; The C; Ingelbrecht I; Adepoju A Theor Appl Genet; 2004 May; 108(8):1582-90. PubMed ID: 14985970 [TBL] [Abstract][Full Text] [Related]
13. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance. Eapen D; Martínez-Guadarrama J; Hernández-Bruno O; Flores L; Nieto-Sotelo J; Cassab GI Plant Sci; 2017 Dec; 265():87-99. PubMed ID: 29223345 [TBL] [Abstract][Full Text] [Related]
14. Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress. Qing DJ; Lu HF; Li N; Dong HT; Dong DF; Li YZ Plant Cell Physiol; 2009 Apr; 50(4):889-903. PubMed ID: 19264788 [TBL] [Abstract][Full Text] [Related]
15. Maize metabolome and proteome responses to controlled cold stress partly mimic early-sowing effects in the field and differ from those of Arabidopsis. Urrutia M; Blein-Nicolas M; Prigent S; Bernillon S; Deborde C; Balliau T; Maucourt M; Jacob D; Ballias P; Bénard C; Sellier H; Gibon Y; Giauffret C; Zivy M; Moing A Plant Cell Environ; 2021 May; 44(5):1504-1521. PubMed ID: 33410508 [TBL] [Abstract][Full Text] [Related]
16. Manifestation of heterosis during early maize (Zea mays L.) root development. Hoecker N; Keller B; Piepho HP; Hochholdinger F Theor Appl Genet; 2006 Feb; 112(3):421-9. PubMed ID: 16362278 [TBL] [Abstract][Full Text] [Related]
17. Heterotic patterns of sugar and amino acid components in developing maize kernels. Römisch-Margl L; Spielbauer G; Schützenmeister A; Schwab W; Piepho HP; Genschel U; Gierl A Theor Appl Genet; 2010 Jan; 120(2):369-81. PubMed ID: 19898829 [TBL] [Abstract][Full Text] [Related]
18. Robust non-syntenic gene expression patterns in diverse maize hybrids during root development. Baldauf JA; Vedder L; Schoof H; Hochholdinger F J Exp Bot; 2020 Jan; 71(3):865-876. PubMed ID: 31638701 [TBL] [Abstract][Full Text] [Related]
19. Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Zhu J; Mickelson SM; Kaeppler SM; Lynch JP Theor Appl Genet; 2006 Jun; 113(1):1-10. PubMed ID: 16783587 [TBL] [Abstract][Full Text] [Related]
20. Translocation of sphingoid bases and their 1-phosphates, but not fumonisins, from roots to aerial tissues of maize seedlings watered with fumonisins. Zitomer NC; Jones S; Bacon C; Glenn AE; Baldwin T; Riley RT J Agric Food Chem; 2010 Jun; 58(12):7476-81. PubMed ID: 20486705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]