These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
770 related articles for article (PubMed ID: 28122503)
1. Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress. Shi J; Yan B; Lou X; Ma H; Ruan S BMC Plant Biol; 2017 Jan; 17(1):26. PubMed ID: 28122503 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomic analysis of the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage. Qian Y; Ren Q; Zhang J; Chen L Gene; 2019 Apr; 692():68-78. PubMed ID: 30641208 [TBL] [Abstract][Full Text] [Related]
3. Comparative transcriptome analysis reveals important roles of nonadditive genes in maize hybrid An'nong 591 under heat stress. Zhao Y; Hu F; Zhang X; Wei Q; Dong J; Bo C; Cheng B; Ma Q BMC Plant Biol; 2019 Jun; 19(1):273. PubMed ID: 31234785 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses. Li Y; Wang X; Li Y; Zhang Y; Gou Z; Qi X; Zhang J Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32756433 [TBL] [Abstract][Full Text] [Related]
5. Comparative Transcriptome Analysis Reveals the Transcriptional Alterations in Growth- and Development-Related Genes in Sweet Potato Plants Infected and Non-Infected by SPFMV, SPV2, and SPVG. Shi J; Zhao L; Yan B; Zhu Y; Ma H; Chen W; Ruan S Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30813603 [TBL] [Abstract][Full Text] [Related]
6. Early transcriptomic adaptation to Na₂CO₃ stress altered the expression of a quarter of the total genes in the maize genome and exhibited shared and distinctive profiles with NaCl and high pH stresses. Zhang LM; Liu XG; Qu XN; Yu Y; Han SP; Dou Y; Xu YY; Jing HC; Hao DY J Integr Plant Biol; 2013 Nov; 55(11):1147-65. PubMed ID: 24034274 [TBL] [Abstract][Full Text] [Related]
7. Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress. Sun Y; Mu C; Chen Y; Kong X; Xu Y; Zheng H; Zhang H; Wang Q; Xue Y; Li Z; Ding Z; Liu X Plant Physiol Biochem; 2016 Dec; 109():467-481. PubMed ID: 27825075 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide expression profiling and phenotypic evaluation of European maize inbreds at seedling stage in response to heat stress. Frey FP; Urbany C; Hüttel B; Reinhardt R; Stich B BMC Genomics; 2015 Feb; 16(1):123. PubMed ID: 25766122 [TBL] [Abstract][Full Text] [Related]
9. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention. Wu L; Li M; Tian L; Wang S; Wu L; Ku L; Zhang J; Song X; Liu H; Chen Y PLoS One; 2017; 12(10):e0185838. PubMed ID: 28973044 [TBL] [Abstract][Full Text] [Related]
10. The Regulatory Network of Sweet Corn ( Wang Z; Xiao Y; Chang H; Sun S; Wang J; Liang Q; Wu Q; Wu J; Qin Y; Chen J; Wang G; Wang Q Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37446023 [TBL] [Abstract][Full Text] [Related]
11. Integrated Transcriptomics and Metabolomics Analysis of Two Maize Hybrids (ZD309 and XY335) under Heat Stress at the Flowering Stage. Zhao P; Sun L; Zhang S; Jiao B; Wang J; Ma C Genes (Basel); 2024 Jan; 15(2):. PubMed ID: 38397179 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome Profiling of Maize ( Waititu JK; Cai Q; Sun Y; Sun Y; Li C; Zhang C; Liu J; Wang H Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34681032 [TBL] [Abstract][Full Text] [Related]
13. Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance. Wang M; Wang Y; Zhang Y; Li C; Gong S; Yan S; Li G; Hu G; Ren H; Yang J; Yu T; Yang K Genes Genomics; 2019 Jul; 41(7):781-801. PubMed ID: 30887305 [TBL] [Abstract][Full Text] [Related]
14. Transcriptomic and alternative splicing analyses provide insights into the roles of exogenous salicylic acid ameliorating waxy maize seedling growth under heat stress. Guo J; Wang Z; Qu L; Hu Y; Lu D BMC Plant Biol; 2022 Sep; 22(1):432. PubMed ID: 36076169 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome profile reveals heat response mechanism at molecular and metabolic levels in rice flag leaf. Zhang X; Rerksiri W; Liu A; Zhou X; Xiong H; Xiang J; Chen X; Xiong X Gene; 2013 Nov; 530(2):185-92. PubMed ID: 23994682 [TBL] [Abstract][Full Text] [Related]
16. Comparative Proteomics Analysis of the Seedling Root Response of Drought-sensitive and Drought-tolerant Maize Varieties to Drought Stress. Zeng W; Peng Y; Zhao X; Wu B; Chen F; Ren B; Zhuang Z; Gao Q; Ding Y Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31181633 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome response of maize (Zea mays L.) seedlings to heat stress. Li ZG; Ye XY Protoplasma; 2022 Mar; 259(2):357-369. PubMed ID: 34117937 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome Profiling of Clematis apiifolia: Insights into Heat-Stress Responses. Gao L; Ma Y; Wang P; Wang S; Yang R; Wang Q; Li L; Li Y DNA Cell Biol; 2017 Nov; 36(11):938-946. PubMed ID: 28945464 [TBL] [Abstract][Full Text] [Related]
19. Comparative transcriptome analysis reveals that tricarboxylic acid cycle-related genes are associated with maize CMS-C fertility restoration. Liu Y; Wei G; Xia Y; Liu X; Tang J; Lu Y; Lan H; Zhang S; Li C; Cao M BMC Plant Biol; 2018 Sep; 18(1):190. PubMed ID: 30208841 [TBL] [Abstract][Full Text] [Related]
20. Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress. Qing DJ; Lu HF; Li N; Dong HT; Dong DF; Li YZ Plant Cell Physiol; 2009 Apr; 50(4):889-903. PubMed ID: 19264788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]