These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28122672)

  • 1. Insights into the subsurface transport of As(V) and Se(VI) in produced water from hydraulic fracturing using soil samples from Qingshankou Formation, Songliao Basin, China.
    Chen SS; Sun Y; Tsang DCW; Graham NJD; Ok YS; Feng Y; Li XD
    Environ Pollut; 2017 Apr; 223():449-456. PubMed ID: 28122672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential impact of flowback water from hydraulic fracturing on agricultural soil quality: Metal/metalloid bioaccessibility, Microtox bioassay, and enzyme activities.
    Chen SS; Sun Y; Tsang DCW; Graham NJD; Ok YS; Feng Y; Li XD
    Sci Total Environ; 2017 Feb; 579():1419-1426. PubMed ID: 27913018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil attenuation of As(III, V) and Se(IV, VI) seepage potential at ash disposal facilities.
    Hyun S; Lee LS
    Chemosphere; 2013 Nov; 93(9):2132-9. PubMed ID: 24054132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater.
    Sun Y; Lei C; Khan E; Chen SS; Tsang DCW; Ok YS; Lin D; Feng Y; Li XD
    Chemosphere; 2017 Jun; 176():315-323. PubMed ID: 28273539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zero-valent iron for the abatement of arsenate and selenate from flowback water of hydraulic fracturing.
    Sun Y; Chen SS; Tsang DCW; Graham NJD; Ok YS; Feng Y; Li XD
    Chemosphere; 2017 Jan; 167():163-170. PubMed ID: 27718428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reaction of selenium (IV) with ascorbic acid: its relevance in aqueous and soil systems.
    Pettine M; Gennari F; Campanella L
    Chemosphere; 2013 Jan; 90(2):245-50. PubMed ID: 22858257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate and transport of chlormequat in subsurface environments.
    Juhler RK; Henriksen T; Rosenbom AE; Kjaer J
    Environ Sci Pollut Res Int; 2010 Jul; 17(6):1245-56. PubMed ID: 20177799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China.
    Zhao X; Dong D; Hua X; Dong S
    J Hazard Mater; 2009 Oct; 170(2-3):570-7. PubMed ID: 19500903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: a review.
    Nakamaru YM; Altansuvd J
    Chemosphere; 2014 Sep; 111():366-71. PubMed ID: 24997941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Element mobilization from Bakken shales as a function of water chemistry.
    Wang L; Burns S; Giammar DE; Fortner JD
    Chemosphere; 2016 Apr; 149():286-93. PubMed ID: 26866966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A soil column study to evaluate treatment of trace elements from saline industrial wastewater.
    Paredez JM; Mladenov N; Galkaduwa MB; Hettiarachchi GM; Kluitenberg GJ; Hutchinson SL
    Water Sci Technol; 2017 Nov; 76(9-10):2698-2709. PubMed ID: 29168710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling selenium (IV and VI) adsorption envelopes in selected tropical soils using the constant capacitance model.
    Gabos MB; Goldberg S; Alleoni LR
    Environ Toxicol Chem; 2014 Oct; 33(10):2197-207. PubMed ID: 24619962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modes of selenium occurrence and LCD modeling of selenite desorption/adsorption in soils around the selenium-rich core, Ziyang County, China.
    Zhang Y; Wu S; Zheng H; Weng L; Hu Y; Ma H
    Environ Sci Pollut Res Int; 2018 May; 25(15):14521-14531. PubMed ID: 29527646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of natural organic matter on As transport and retention.
    Sharma P; Rolle M; Kocar B; Fendorf S; Kappler A
    Environ Sci Technol; 2011 Jan; 45(2):546-53. PubMed ID: 21142173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential impact of acid precipitation on arsenic and selenium.
    Mushak P
    Environ Health Perspect; 1985 Nov; 63():105-13. PubMed ID: 4076075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption, desorption and displacement of ibuprofen, estrone, and 17β estradiol in wastewater irrigated and rainfed agricultural soils.
    Durán-Álvarez JC; Prado B; Ferroud A; Juayerk N; Jiménez-Cisneros B
    Sci Total Environ; 2014 Mar; 473-474():189-98. PubMed ID: 24370693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption, degradation and microbial toxicity of chemicals associated with hydraulic fracturing fluid and produced water in soils.
    Kookana RS; Williams M; Gregg A; Semmler A; Du J; Apte SC
    Environ Pollut; 2022 Sep; 309():119754. PubMed ID: 35835270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-line separation and preconcentration of inorganic arsenic and selenium species in natural water samples with CTAB-modified alkyl silica microcolumn and determination by inductively coupled plasma-optical emission spectrometry.
    Xiong C; He M; Hu B
    Talanta; 2008 Aug; 76(4):772-9. PubMed ID: 18656657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of maturity and mineralogy on fluid-rock reactions in the Marcellus Shale.
    Pilewski J; Sharma S; Agrawal V; Hakala JA; Stuckman MY
    Environ Sci Process Impacts; 2019 May; 21(5):845-855. PubMed ID: 30840020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geochemical conditions conducive for retention of trace elements and radionuclides during shale-fluid interactions.
    Mehta N; Kocar BD
    Environ Sci Process Impacts; 2019 Oct; 21(10):1764-1776. PubMed ID: 31553335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.