BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1009 related articles for article (PubMed ID: 28123029)

  • 1. Newly Formed Endothelial Cells Regulate Myeloid Cell Activity Following Spinal Cord Injury via Expression of CD200 Ligand.
    Cohen M; Ben-Yehuda H; Porat Z; Raposo C; Gordon S; Schwartz M
    J Neurosci; 2017 Jan; 37(4):972-985. PubMed ID: 28123029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice.
    Shechter R; London A; Varol C; Raposo C; Cusimano M; Yovel G; Rolls A; Mack M; Pluchino S; Martino G; Jung S; Schwartz M
    PLoS Med; 2009 Jul; 6(7):e1000113. PubMed ID: 19636355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CD200 modulates spinal cord injury neuroinflammation and outcome through CD200R1.
    Lago N; Pannunzio B; Amo-Aparicio J; López-Vales R; Peluffo H
    Brain Behav Immun; 2018 Oct; 73():416-426. PubMed ID: 29870752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated TRPV4 Levels Contribute to Endothelial Damage and Scarring in Experimental Spinal Cord Injury.
    Kumar H; Lim CS; Choi H; Joshi HP; Kim KT; Kim YH; Park CK; Kim HM; Han IB
    J Neurosci; 2020 Feb; 40(9):1943-1955. PubMed ID: 31974206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential detection and distribution of microglial and hematogenous macrophage populations in the injured spinal cord of lys-EGFP-ki transgenic mice.
    Mawhinney LA; Thawer SG; Lu WY; Rooijen Nv; Weaver LC; Brown A; Dekaban GA
    J Neuropathol Exp Neurol; 2012 Mar; 71(3):180-97. PubMed ID: 22318123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Agonist of the Protective Factor SIRT1 Improves Functional Recovery and Promotes Neuronal Survival by Attenuating Inflammation after Spinal Cord Injury.
    Chen H; Ji H; Zhang M; Liu Z; Lao L; Deng C; Chen J; Zhong G
    J Neurosci; 2017 Mar; 37(11):2916-2930. PubMed ID: 28193684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IL-4 drives microglia and macrophages toward a phenotype conducive for tissue repair and functional recovery after spinal cord injury.
    Francos-Quijorna I; Amo-Aparicio J; Martinez-Muriana A; López-Vales R
    Glia; 2016 Dec; 64(12):2079-2092. PubMed ID: 27470986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interleukin-1 participates in the classical and alternative activation of microglia/macrophages after spinal cord injury.
    Sato A; Ohtaki H; Tsumuraya T; Song D; Ohara K; Asano M; Iwakura Y; Atsumi T; Shioda S
    J Neuroinflammation; 2012 Apr; 9():65. PubMed ID: 22483094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High mobility group box-1 (HMGB1) is increased in injured mouse spinal cord and can elicit neurotoxic inflammation.
    Kigerl KA; Lai W; Wallace LM; Yang H; Popovich PG
    Brain Behav Immun; 2018 Aug; 72():22-33. PubMed ID: 29175543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment.
    Watanabe S; Uchida K; Nakajima H; Matsuo H; Sugita D; Yoshida A; Honjoh K; Johnson WE; Baba H
    Stem Cells; 2015 Jun; 33(6):1902-14. PubMed ID: 25809552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation.
    Rolls A; Shechter R; London A; Segev Y; Jacob-Hirsch J; Amariglio N; Rechavi G; Schwartz M
    PLoS Med; 2008 Aug; 5(8):e171. PubMed ID: 18715114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone Marrow-Derived Monocytes Drive the Inflammatory Microenvironment in Local and Remote Regions after Thoracic Spinal Cord Injury.
    Norden DM; Faw TD; McKim DB; Deibert RJ; Fisher LC; Sheridan JF; Godbout JP; Basso DM
    J Neurotrauma; 2019 Mar; 36(6):937-949. PubMed ID: 30014767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of the Fractalkine Receptor, CX3CR1, Improves Endogenous Repair, Axon Sprouting, and Synaptogenesis after Spinal Cord Injury in Mice.
    Freria CM; Hall JC; Wei P; Guan Z; McTigue DM; Popovich PG
    J Neurosci; 2017 Mar; 37(13):3568-3587. PubMed ID: 28264978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair.
    Gaudet AD; Mandrekar-Colucci S; Hall JC; Sweet DR; Schmitt PJ; Xu X; Guan Z; Mo X; Guerau-de-Arellano M; Popovich PG
    J Neurosci; 2016 Aug; 36(32):8516-32. PubMed ID: 27511021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IL-4 signaling drives a unique arginase+/IL-1β+ microglia phenotype and recruits macrophages to the inflammatory CNS: consequences of age-related deficits in IL-4Rα after traumatic spinal cord injury.
    Fenn AM; Hall JC; Gensel JC; Popovich PG; Godbout JP
    J Neurosci; 2014 Jun; 34(26):8904-17. PubMed ID: 24966389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Tissue-repairing" blood-derived macrophages are essential for healing of the injured spinal cord: from skin-activated macrophages to infiltrating blood-derived cells?
    Schwartz M
    Brain Behav Immun; 2010 Oct; 24(7):1054-7. PubMed ID: 20149864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aldose Reductase Regulates Microglia/Macrophages Polarization Through the cAMP Response Element-Binding Protein After Spinal Cord Injury in Mice.
    Zhang Q; Bian G; Chen P; Liu L; Yu C; Liu F; Xue Q; Chung SK; Song B; Ju G; Wang J
    Mol Neurobiol; 2016 Jan; 53(1):662-676. PubMed ID: 25520004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of microglial cell responses in murine Toxoplasma encephalitis by CD200/CD200 receptor interaction.
    Deckert M; Sedgwick JD; Fischer E; Schlüter D
    Acta Neuropathol; 2006 Jun; 111(6):548-58. PubMed ID: 16718351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classical activation of microglia in CD200-deficient mice is a consequence of blood brain barrier permeability and infiltration of peripheral cells.
    Denieffe S; Kelly RJ; McDonald C; Lyons A; Lynch MA
    Brain Behav Immun; 2013 Nov; 34():86-97. PubMed ID: 23916893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury.
    Ceruti S; Villa G; Genovese T; Mazzon E; Longhi R; Rosa P; Bramanti P; Cuzzocrea S; Abbracchio MP
    Brain; 2009 Aug; 132(Pt 8):2206-18. PubMed ID: 19528093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 51.